[Thai] Course 8: Intelligent Decision Support Systems

วัตถุประสงค์ของรายวิชา:

เพื่อให้ผู้เรียนมีความรู้ด้านวิทยาการสมัยใหม่เกี่ยวกับแนวคิด กระบวนการ กลยุทธ์ และเทคโนโลยีในการตัดสินใจที่ใช้ในการแก้ไขปัญหาจริงด้วยวิธีการ Agile และสอดคล้องกับอุตสาหกรรม 4.0
ผู้เรียนจะได้เรียนรู้วิธีการในการวิเคราะห์ ออกแบบ การนำไปใช้งาน และการตรวจสอบระบบสนับสนุนการตัดสินใจอัจฉริยะ (IDSS) การบูรณาการแบบจำลองปัญญาประดิษฐ์และแบบจำลองทางสถิติ โดยเน้นที่จะค้นหาความรู้จากข้อมูลดิบ รายวิชานี้ประกอบไปด้วยแนวคิดและการพัฒนาระบบ IDSS เครื่องมือโปรแกรมสำหรับการพัฒนาระบบ IDSS และการประยุกต์ใช้ในระบบการผลิตดิจิทัล

ผลลัพธ์ของรายวิชา:

นักเรียนเมื่อจบหลักสูตรนี้จะสามารถ:

  • อธิบายแนวคิดของระบบสนับสนุนการตัดสินใจในบริบทของระบบที่สามารถตอบโต้กับผู้ใช้งาน
  • อธิบายผลกระทบด้านต่าง ๆ ของระบบสนับสนุนการตัดสินใจที่มีต่ออุตสาหกรรม 4.0
  • ประยุกต์ใช้วิธีการต่าง ๆ ของระบบสนับสนุนการตัดสินใจ เช่น โครงข่ายประสาทเทียม (Artificial Neural Networks) การเรียนรู้ของเครื่อง (Machine Learning) ระบบกฎเกณฑ์ (Rule-based Systems) เป็นต้น และทวนสอบวิธีการต่าง ๆ ที่นำมาใช้ในการแก้ปัญหาที่ซับซ้อนของอุตสาหกรรม
  • ประเมินความสามารถของระบบสนับสนุนการตัดสินใจในรูปแบบต่าง ๆ
  • ออกแบบระบบฐานความรู้สำหรับกระบวนการผลิตแบบชาญฉลาด

รายวิชาเรียนก่อน :  ไม่มี

 แผนการเรียน:

สัปดาห์ หัวข้อ ปฎิบัติการ เอกสารประกอบการเรียน เอกสารประกอบการสอน หมายเหตุ
1. แนวคิดและการพัฒนา IDSS
1 ความจำเป็นของเครื่องมือสนับสนุนการตัดสินใจ MSIE-08-L-M1S1-TH
2 แบบจำลองกระบวนการตัดสินใจ MSIE-08-L-M1S2-TH
3 โครงสร้าง การวิเคราะห์ การออกแบบ การระบุความต้องการ และ การตรวจสอบระบบ IDSS MSIE-08-L-M1S3-TH
4 ผลกระทบของ IDSS ต่อสมรรถนะอุตสาหกรรม
ผลกระทบด้านเศรษฐศาสตร์ของ IDSS ต่ออุตสาหกรรม
MSIE-08-L-M1S4-TH
5 วิธีการอไจล์สำหรับการผลิตแบบชาญฉลาด MSIE-08-L-M1S5-TH
2. เครื่องมือโปรแกรมสำหรับการพัฒนาระบบ IDSS
6 กระบวนการลำดับชั้นเชิงวิเคราะห์ MSIE-08-L-M2S1-TH
7 โปรแกรม R MSIE-08-L-M2S2-TH
8 โปรแกรม RapidMiner MSIE-08-L-M2S3-TH
9 โปรแกรม WEKA MSIE-08-L-M2S4-TH
10 การเรียนรู้เชิงลึก MSIE-08-L-M2S5-TH
3. IDSS สำหรับระบบการผลิตดิจิทัล
11 ปัญญาประดิษฐ์และระบบการตัดสินใจ
การการแสวงหาความรู้และการแทนความรู้
MSIE-08-L-M3S1-TH
12 แบบจำลองสำหรับการทำนาย MSIE-08-L-M3S2-TH
13 แบบจำลองความไม่แน่นอน MSIE-08-L-M3S3-TH
14 การประยุกต์ใช้ในอุตสาหกรรม MSIE-08-L-M3S4-TH
15 ระบบฐานความรู้สำหรับการผลิตแบบชาญฉลาด MSIE-08-L-M3S5-TH

 

ปฏิบัติการ:

  1. การวิเคราะห์ความจำเป็นของเครื่องมือสนับสนุนการตัดสินใจ
  2. การสร้างแบบจำลองกระบวนการตัดสินใจอัจฉริยะ
  3. การออกแบบและตรวจสอบระบบ IDSS
  4. ผลกระทบของ IDSS ที่มีต่ออุตสาหกรรม
  5. การสร้างระบบการผลิตชาญฉลาดด้วยวิธีการอไจล์
  6. การพัฒนาระบบ IDSS ด้วย AHP
  7. การวิเคราะห์การตัดสินใจแบบหลายวัตถุประสงค์ด้วยโปรแกรม R
  8. RapidMiner และ เหมืองข้อมูล
  9. การจำแนกกลุ่มอย่างง่ายด้วยโปรแกรม WEKA
  10. การเรียนรู้เชิงลึกสำหรับการผลิตแบบชาญฉลาด
  11. การการแสวงหาความรู้และการแทนความรู้
  12. การร่วมแบบจำลองสำหรับการทำนายเข้ากับระบบ IDSS
  13. การร่วมแบบจำลองความไม่แน่นอนเข้ากับระบบ IDSS
  14. การประยุกต์ใช้ IDSS กับสถานการณ์จริง
  15. การสร้างระบบฐานความรู้สำหรับการผลิตแบบชาญฉลาด

แหล่งการเรียนรู้

หนังสือคู่มือ: ไม่มีหนังสือเรียนที่กำหนด แต่จะมีบันทึกประจำชั้นและเอกสารประกอบคำบรรยาย

หนังสืออ้างอิง:

  1. Gupta, J.N.D., Forgionne, G.A., and Manuel, M.T., Intelligent Decision-making Support Systems: Foundations, Applications and Challenges, Springer, 2006.
  2. Iantovics, B., and Kountchev, R., Advanced Intelligent Computational Technologies and Decision Support Systems, Springer, 2014
  3. Kumer. K., Zindani, D. and Davim, J.P., Digital Manufacturing and Assembly Systems in Industry 4.0, CRC Press, 2019
  4. Tweedale, J.W., Neves-Silva, R., Jain, L.C., Phillips-Wren, G., Watada, J., and Howlett, R.J., Intelligent Decision Technology Support in Practice, Springer, 2016
  5. Valencia-Garcia, R, Paredes-Valverde, M.A., Salas-Zarate, M.P. and Alor-Hernandez, Giner., Exploring Intelligent Decision Support Systems, Springer, 2018

วารสารวิชาการ และ นิตยสาร:

  • Decision Support Systems, Elsevier
  • Journal of Decision Systems, Taylor & Francis LTD
  • International Journal of Decision Support System Technology, IGI Global
  • International Journal of Intelligent Systems, Wiley-Blackwell
  • IEEE Intelligent Systems, IEEE
  • Expert Systems, Wiley

วิธีการเรียนการสอน

การสอนเน้นการมีส่วนร่วม ผู้เรียนมีส่วนร่วมในกิจกรรมต่าง ๆ ในห้องเรียนผ่านการพูดคุยและการรับฟังความเห็นของผู้อื่น วิธีการเรียนรู้ประกอบไปด้วย กรณีศึกษา การอภิปรายกลุ่ม งานที่ได้รับมอบหมายรายบุคคล แบบฝึกหัดจากปัญหาจริง การจำลองแบบ การลงพื้นที่ และโครงงานกลุ่ม

สัดส่วนเวลาการเรียนการสอน:

บรรยาย: 15 ชั่วโมง
ปฏิบัติการ: 60 ชั่วโมง
การศึกษาค้นคว้าด้วยตนเอง/โครงงานกลุ่ม: 75 ชั่วโมง

การประเมินผล:

เกรดสุดท้ายจะคำนวณตามการกระจายน้ำหนักดังต่อไปนี้:

  1. กรณีศึกษา 20%
  2. แบบฝึกหัดจากปัญหาจริง 10%
  3. การมอบหมายงาน 10%
  4. แฟ้มสะสมงาน 5%
  5. การประเมินโดยเพื่อน 5%
  6. การนำเสนองาน 10%
  7. โครงงานกลุ่ม 20%
  8. สอบข้อเขียน 20%

ผู้พัฒนารายวิชา: Suriya Jirasatitsin (suriya.j@psu.ac.th, PSU), Warapoj Meethom (warapoj.m@eng.kmutnb.ac.th, KMUTNB) and Thitipong Jamrus (thitja@kku.ac.th, KKU)

Course 8: Intelligent Decision Support Systems

Course Objectives: The objective of this course is to give students the up-to-date of decision-making concepts, processes, strategies, and technologies that are often used to support decision making in real-world issues coupled with agile approach and industry 4.0 specification.
Students will know how to analyze, to design, to implement and to validate an Intelligent Decision Support System (IDSS). The integration of Artificial Intelligence models and Statistical models, and the knowledge discovery from the data step will be emphasized.
The course consists of foundations and developments of IDSS, software tools for IDSS development, IDSS for Digital Manufacturing Systems, and IDSS applications

Learning Outcomes: The students on the completion of this course would be able to

CLO1 – Explain concepts of a decision support system in terms of an interactive system providing information, tools and models and its effects on Industry 4.0. (Understanding)
CLO2 – Apply techniques of IDSS (e.g. artificial neural networks, machine learning, rule-based systems, etc.) and validate IDSS techniques to solve a complex industrial problem. (Applying, Valuing)
CLO3 – Identify decision factors, models, and analysis of intelligent decision support systems (IDSS) to support a smart production. (Analyzing, Receiving)
CLO4 – Appraise the frameworks of IDSS. (Evaluating)
CLO5 – Design a knowledge-based system for smart production. (Creating, Teamwork and Communication Skills)

Prerequisite: None

Course Outline:

Week Topic Workshop Learning Materials Teaching Materials Note
I. IDSS Foundation and Development
1 The Needs of Decision Support Tools MSIE-08-T-M1S1-W01 MSIE-08-L-M1S1 MSIE-08-T-M1S1
2 Modelling of Decision Process MSIE-08-T-M1S2-W01 MSIE-08-L-M1S2 MSIE-08-T-M1S2
3 IDSS Architecture, Analysis, Design, Requirements, and Validation MSIE-08-T-M1S3-W01 MSIE-08-L-M1S3 MSIE-08-T-M1S3
4 Impact of IDSS in Industrial Performance

Economic Impact of IDSS in industry

MSIE-08-T-M1S4-W01 MSIE-08-L-M1S4 MSIE-08-T-M1S4
5 Agile Approach for Smart Production MSIE-08-T-M1S5-W01 MSIE-08-L-M1S5 MSIE-08-T-M1S5
II. Software Tools for IDSS Development
6 The Analytic Hierarchy Process (AHP) IDSS Development by AHP MSIE-08-L-M2S1 MSIE-08-T-M2S1-4
7 R-software Multi-objective Decision Analysis in R MSIE-08-L-M2S2 Multi Objective Decision Analysis in R
8 RapidMiner RapidMiner & Data Mining MSIE-08-L-M2S3 Data Mining for the Masses
9 WEKA Simple Classifiers with WEKA MSIE-08-L-M2S4 Data Mining with WEKA
10 Deep Learning for Smart Production MSIE-08-T-M2S5 MSIE-08-L-M2S5 MSIE-08-T-M2S5
III. IDSS for Digital Manufacturing Systems
11 – Artificial Intelligence and DSS

– Knowledge Acquisition and Representation

MSIE-08-T-M3S1-W01 MSIE-08-L-M3S1 MSIE-08-T-M3S1
12 Predictive Models MSIE-08-T-M3S2-W01 MSIE-08-L-M3S2 MSIE-08-T-M3S2
13 Uncertainty Models MSIE-08-T-M3S3-W01 MSIE-08-L-M3S3 MSIE-08-T-M3S3
14 Industrial Applications MSIE-08-T-M3S4-W01 MSIE-08-L-M3S4 MSIE-08-T-M3S4
15 Knowledge-based Systems for Smart Production MSIE-08-T-M3S5-W01 MSIE-08-L-M3S5 MSIE-08-T-M3S5

Flashback:

Laboratory Session: None

Textbooks: No designated textbook, but class notes and handouts will be provided.

Reference Books:

1. Gupta, J.N.D., Forgionne, G.A., and Manuel, M.T., Intelligent Decision-making Support Systems: Foundations, Applications and Challenges, Springer, 2006
2. Iantovics, B., and Kountchev, R., Advanced Intelligent Computational Technologies and Decision Support Systems, Springer, 2014
3. Kumer. K., Zindani, D. and Davim, J.P., Digital Manufacturing and Assembly Systems in Industry 4.0, CRC Press, 2019
4. Tweedale, J.W., Neves-Silva, R., Jain, L.C., Phillips-Wren, G., Watada, J., and Howlett, R.J., Intelligent Decision Technology Support in Practice, Springer, 2016
5. Valencia-Garcia, R, Paredes-Valverde, M.A., Salas-Zarate, M.P. and Alor-Hernandez, Giner., Exploring Intelligent Decision Support Systems, Springer, 2018

Journals and Magazines:

1. Decision Support Systems, Elsevier
2. Journal of Decision Systems, Taylor & Francis LTD
3. International Journal of Decision Support System Technology, IGI Global
4. International Journal of Intelligent Systems, Wiley-Blackwell
5. IEEE Intelligent Systems, IEEE
6. Expert Systems, Wiley

Teaching and Learning Methods:

The Collaboration is the main idea of teaching. Students are actively participated in the class by talking with each other and listening to other opinions. The learning methods include case study, group discussion, individual assignment, practical exercises, simulation, field class, and a group project.

Time Distribution and Study Load:

Lectures: 15 hours
Workshop: 60 hours
Self-study/Group Project: 75 hours

Evaluation Scheme:

The final grade will be computed according to the following weight distribution: Case Studies 20%, Practical Exercises 10%, Assignments 10%, Portfolio 5%, Peer Assessment 5%, Oral Presentation 10%, Project 20%, and Open Exam 20%. In final grading,

An “A” would be awarded if a student shows a deep understanding of the knowledge learned through assignments, project works, and exam results.
A “B” would be awarded if a student shows an overall understanding of all topics.
A “C” would be given if a student meets below average expectation in understanding and application of basic knowledge.
A “D” would be given if a student does not meet expectations in both understanding and application of the given knowledge.

Developer: Suriya Jirasatitsin (suriya.j@psu.ac.th, PSU), Warapoj Meethom (warapoj.m@eng.kmutnb.ac.th, KMUTNB) and Thitipong Jamrus (thitja@kku.ac.th, KKU)