Co-funded by the Erasmus+ Programme of the European Union

Course 11: Collaborative Manufacturing Systems

Kunlapat Thongkaew, Thanate Ratanawilai, Wanida Rattanamanee, Wasawat Nakkiew, Pisut Koomsap

Curriculum Development

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry

Competing through manufacturing

Solutions for improve manufacturing efficiency

- Reduce waste material
- ✓ Conduct preventive maintenance
- Standardize work
- ✓ Quantify everything
- ✓ Apply new technologies
- Strengthen supply chain management

Key is Collaborative manufacturing

collaboration Collaboration

Collaborative Manufacturing System

Sharing information between business processes across internal or external partners in the value chain network

Collaborative manufacturing

With collaborative manufacturing, all parties in the business relationship contribute to the betterment of the whole

By ACR.

Course Objective

Collaboration among partners to form a value network has become necessary as up-to-date information is so critical in a competitive market. **Sharing of information** among a network of physical units on the shop floor and connecting internal manufacturing processes and business processes with external business processes allow a company to offer a core competence with flexible, responsive operations meeting the expectations of customers and the value network partners.

This course aims to build students' competence in collaboration in manufacturing from the board picture of collaborative manufacturing management down to collaboration on a shop floor. The students will learn from concepts, applications, and hands-on experience

Course Learning Outcomes (CLOs)

The students on the completion of this course would be able to

CLO1: Recognize a potential collaborative manufacturing in a factory (understand)
CLO2: Identify a value network for collaborative manufacturing for a business (apply)
CLO3: Apply collaborative manufacturing management in practice (apply)
CLO4: Manipulate collaborative robots for collaborative tasks (apply)
CLO5: Manage manufacturing collaboration on a shop floor (apply)

Course Outline

I Collaborative Manufacturing Management

- Evolution of Manufacturing Systems
- Collaborative Manufacturing Management Model

- Collaborative Manufacturing Management Fundamentals and Infrastructure
- Ontology for Collaborative Manufacturing

Course Outline

II Machines Collaboration on a Shop Floor

• Distributed Manufacturing

ME)

- Distributed Arrival Time Control for Real-Time Scheduling
- Collaborative Material Handling System
- Collaborative Manufacturing Processes

Course Outline

III Man-Machine Collaboration on a Shop Floor

- Evolution of Man-Machine Collaboration
- Industrial human augmentation systems
- Flexible Human-Robot Collaboration
- Cyber-Human System

Modules' Contribution to Course Learning Outcomes

Module's contribution to Laboratories:

Module I: Collaborative Manufacturing Management

 laboratory on plant simulation Module II: Machines Collaboration on a Shop Floor

- laboratory on collaborative machines, robots
- laboratory on collaborative material handling system

Module III: Man-Machine Collaboration on a Shop Floor

 laboratory on collaborative robots

Learning Experience Embedded Course Outline-Collaborative Manufacturing System

Sequence of learning stages (Learning

Module	Subtopic	experience)			
		AC	AE	CE	RO
I. Collaborative Manufacturing Management	1. Evolution of Manufacturing Systems	1(LO)		12(LE)	13(L)
	2. Collaborative Manufacturing Management Model	2 (LO)	3(E)	12(LE)	13(L)
	3. Collaborative Manufacturing Management Fundamentals and Infrastructure	7(LO)	4(LE)	5(LO)	6(L)
	4. Ontology for Collaborative Manufacturing	10(O)	11(LE)	8(VL)	9(L)
					Entry stage
			F	ulfil during the g	group project

<u>Note</u>

MS

LOVE

model

Kolb's model • Kolb's model → AC: abstract conceptualization, AE: active experiment, CE: concrete experience and RO: reflective observation.

Love model → L: Learning, O: Observing, V: Visiting and E: Experimenting

Learning Experience Embedded Course Outline-Collaborative Manufacturing System

Commence of loomstage stores

Module	Subtopic	(Learning experience)				
		AC	AE	CE	RO	
II. Machines Collaboration on a Shop Floor	1. Distributed Manufacturing	17(LO)	18(O)	15(LO)	16(L)	
	2. Distributed Arrival Time Control for Real- Time Scheduling	22(LO)	19(LE)	20(LO)	21(L)	
	3. Collaborative Material Handling System	23(LO)	24 (LE)	25(LE)	26(L)	
	4. Collaborative Manufacturing Processes	27(LO)	28 (LE)	29(LO)	30(L)	
					Entry stage	
	Fulfil during the g			roup project		

<u>Note</u>

MS

LOVE

model

Kolb's model • Kolb's model → AC: abstract conceptualization, AE: active experiment, CE: concrete experience and RO: reflective observation.

Love model → L: Learning, O: Observing, V: Visiting and E: Experimenting

Learning Experience Embedded Course Outline-Collaborative Manufacturing System

Module	Subtopic	Sequence of learning stages (Learning experience)			
		AC	AE	CE	RO
III. Man-Machine Collaboration on a Shop Floor	1. Evolution of Man-Machine Collaboration	31(LO)	32 (LE)	39 (LO)	40 (L)
	2. Industrial human augmentation systems	33(LO)	34 (LE)	39 (LO)	40 (L)
	3. Flexible Human-Robot Collaboration	35(LO)	36 (LE)	39 (LO)	40 (L)
	4. Cyber-Human System	37(LO)	38 (LE)	39 (LO)	40 (L)
1.					Entry stage
LOVE Fulfil during the group pro				group project	

<u>Note</u>

MSE

model

Kolb's model

- Kolb's model → AC: abstract conceptualization, AE: active experiment, CE: concrete experience and RO: reflective observation.
- Love model → L: Learning, O: Observing, V: Visiting and E: Experimenting

Assessments

	CLO1	CLO2	CLO3	CLO4	CLO5		
Formative Assessment Method							
Class discussion and participation (5%)	9	9	3	3	3		
Peer assessment in class activities (5%)	3	3	9	9	9		
Practical exercises (20%)		3	9	9	9		
Assignments (10%)		9	9	3	3		
Summative Assessment Method							
Presentation (10%)		3	3	9	9		
Group project (50%)		3	9	9	9		

9: Strong; 3: Moderate, 1: weak

Co-funded by the Erasmus+ Programme of the European Union

Thank You

Together We Will Make Our Education Stronger

https://msie4.ait.ac.th/

Jniversidade do Minho

@MSIE4Thailand

MSIE 4.0 Channel

You Tube

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry