Co-funded by the Erasmus+ Programme of the European Union

III Man-Machine Collaboration on a Shop Floor

Industrial human augmentation systems

Curriculum Development

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry

1818

- Advanced human augmentation provides a human-centred perspective on technology design.
- It builds upon earlier technological concepts such as
 - ubiquitous computing
 - wearable computing
 - augmented- virtual- and mixed realities
 - autonomous systems
 - ambient intelligence

- New advanced human augmentation solutions will strongly influence industrial work tasks.
- Many industrial jobs are anticipated to become knowledge-intensive and even new work roles are expected to emerge.
- Future workers will monitor and supervise autonomous systems
 - the employees possess multifunctional skills
 - take more responsibility in the content of their work
 - work tasks are shared flexibly between automation systems and the human workers

- The vision of the future Augmented Superworker
 - the employee's wearable enhancements will shift from safety and security towards connectivity, comfort and efficient co-operation with intelligent automation.
 - Future industrial work is expected to move towards a shared awareness with autonomous systems
 - The content of the work moves from distributing the workload and observing the workers towards co-evolving a human-autonomous system partnership.
 - The future employees will need to trust their systems; they need to experience control over their tools and ownership of their work processes, and, primarily they require advanced and efficient tools for working in their new operational environments.

- The future employees
 - need to trust their systems
 - need to experience control over their tools and ownership of their work processes
 - require advanced and efficient tools for working in their new operational environments

Vision of the future Superworker

Source: KYMÄLÄINEN1 et al., 2016

- The technical interaction concepts are based on
 - virtual, augmented and mixed reality (VR/AR/MR) solutions
 - wearable computing devices
 - smart materials
 - brain and skin interfaces and near-eye displays
- The information provision for the augmented human utilizes
 - activity and behavior analysis
 - personalization, situation and context awareness

The technical set up of the VR/AR/MR

Source: Helin etal., 2016

- Industrial cases of augmented human; telecommunication satellites
 - A thousand coax cables must be mounted on the payload's panels during the assembly phase.
 - The length of the cables ranges from 20 cm to 4 m.
 - The installation of a single coax lasts approximately 1 hour included
 - preparation of the installation
 - the assembly
 - the documentary aspects related to traceability

Assembled Coax Cables on a Payload

Source: Helin etal., 2016

- Augmented on-job-learning in a Mixed reality environment
- The job description for the actual test task was as follows:

"You are a maintenance engineer and have this system in use. Now you need to check the status of the engine and perform the necessary procedures. The system tells you how to proceed."

A test subject reacting with the system

Source: Helin etal., 2016

- Augmented human suggested that the focus of design investigations should be very close to the human boundary level; to human experiences.
- The premise for the design investigations should start by
 - Considering the path from the present to future
 - Prioritizing key focus areas such as high knowledge manual work, e.g. knowledge-intensive maintenance and emerging Augmented Human technologies

Co-funded by the Erasmus+ Programme of the European Union

Thank You

Together We Will Make Our Education Stronger

https://msie4.ait.ac.th/

Jniversidade do Minho

@MSIE4Thailand

MSIE 4.0 Channel

You Tube

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry