

Co-funded by the Erasmus+ Programme of the European Union

Session 3.1:

An Overview of Digital Technologies

Curriculum Development

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry

1818

Module 3: Optimization and Its Applications in Industry 4 Era

3.1 An Overview of Digital Technologies (1 hr.)

3.1.1 Digital technology concept

- 3.1.2 Digital technology hardware & software
- 3.1.3 Digital technology applications

3.2 Optimization (Opt) concept and Its Applications in Industry 4.0 Era (2 hrs.)

- 3.2.1 Optimization concept in Industry 4.0 era
- 3.2.2 Optimization applications in Industry 4.0 and mobile support
 - Opt in Warehouse and Inventory Management
 - Opt in Transportation problems
 - Opt in Scheduling problems

Co-tunded by the Erasmus+ Programme of the European Union

3.3 Optimization (Opt) Design in I4.0 (2 hrs.)

- 3.3.1 System analysis concept
- 3.3.2 System architecture, module and component design
- 3.3.3 Data input/output user interface design
- 3.3.4 Optimization programming, modeling, and simulation
- 3.3.5 Evaluating the designed system

3.4 Real-Time Optimization (2 hrs.)

- 3.4.1 Checking optimality conditions when input data change
- 3.4.2 Setting initial solution when input data change

3.5 Case Study (3 hrs.)

3.1 An Overview of Digital Technologies

- Today is <u>"digital business</u>" context.
 - Students discuss why today is digital business.
 - Give some extraordinary examples
- Speed and timing are importance as a competitive advantage in an increasingly real-time economy.
 - Why??
- A large amount of data are generated by IoT devices (i.e., from mobile technologies for engaging with customers).
- However, businesses don't want data. They want visibility and dashboards to be fast and timely.
 - Examples??
- Therefore, cybersecurity tools and data analytics are required to invest (source: PWC).
- Industry 4.0 brings new opportunities to realize a smarter factory.
- Challenges from Industry 4.0 (Xu et al., 2016) in terms of research aspect:
 - Modeling a system with IoT devices (i.e., sensors, GPS, camera, or connected devices) is generated a large amount of data.
 - Those data may keep arriving and changing, and so any optimization model of such a system must be efficient and dynamic.
 - Connection and integration among different system components creates another challenge; an integrated system has many more decision variables.

3.1.1 An Overview of Digital Technologies

Source: https://www.visualistan.com/2015/04/the-history-of-technology-infographic.html

Erasmus+ Programme of the European Union

Source: https://www.visualistan.com/2015/04/the-history-of-technology-infographic.html

3.1.1 Digital technology history and concept

2010-PRESENT

2010 - As more and more people access the web on mobile devices, Responsive Web Design starts to gain more traction

2014 - HTML5 is published as a W3C recommendation, upholding the standard to make the web a more beautiful and efficient place

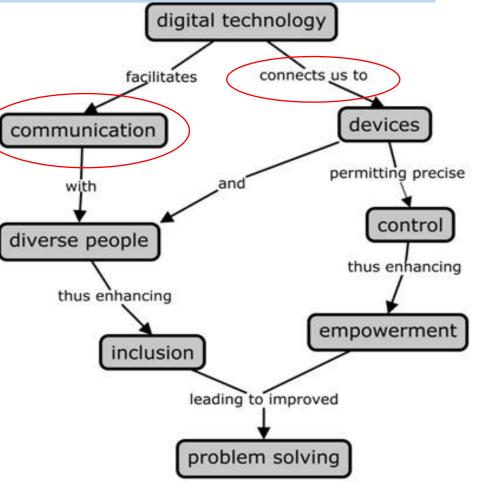
Source:

https://www.visualistan.com/2015/04/the -history-of-technology-infographic.html

Responsive Web Design, HTML5

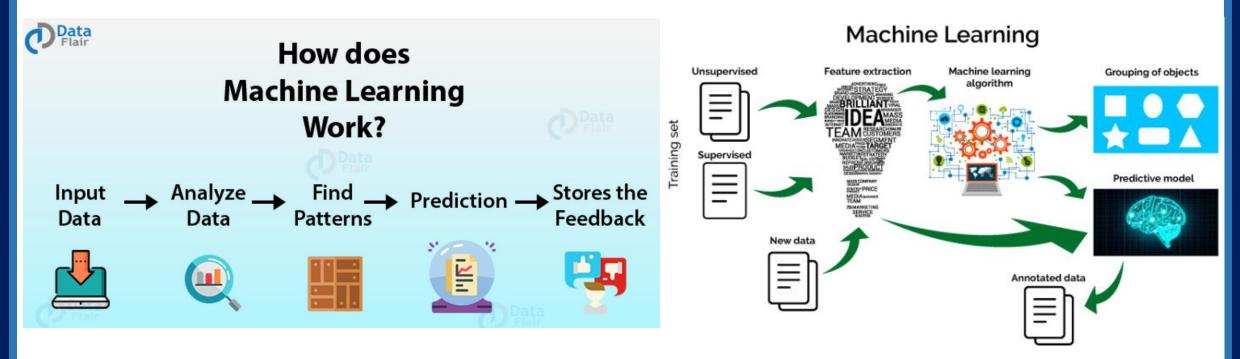
3.1.1 Digital technology concept

- Digital optimization is the process of using digital technology to improve existing operating processes and business models (www.gartner.com).
- Digital technologies are electronic tools, systems, devices and resources that generate, store or process data. (https://www.education.vic.gov.au/school/teachers/teachingresources/digital/Pages/teach.aspx)
- The digital systems concept focuses on the components of digital systems: hardware and software (computer architecture and the operating system), and networks and the internet (wireless, mobile and wired networks and protocols). This concept is addressed in both strands.
- Well known examples include social media, online games, multimedia and mobile phones.


3.1.1 Digital technology concept

- Digital technology facilitate communication by and with diverse people,
- Enhancing inclusion and participation by more segments of society.
- These technologies connect us to the material world in new ways, permitting more precise **control** of environment.
- Jointly, these two aspects, inclusiveness on the one hand and empowerment on the other, lead to better problem solving.

Co-funded by the Erasmus+ Programme of the European Union

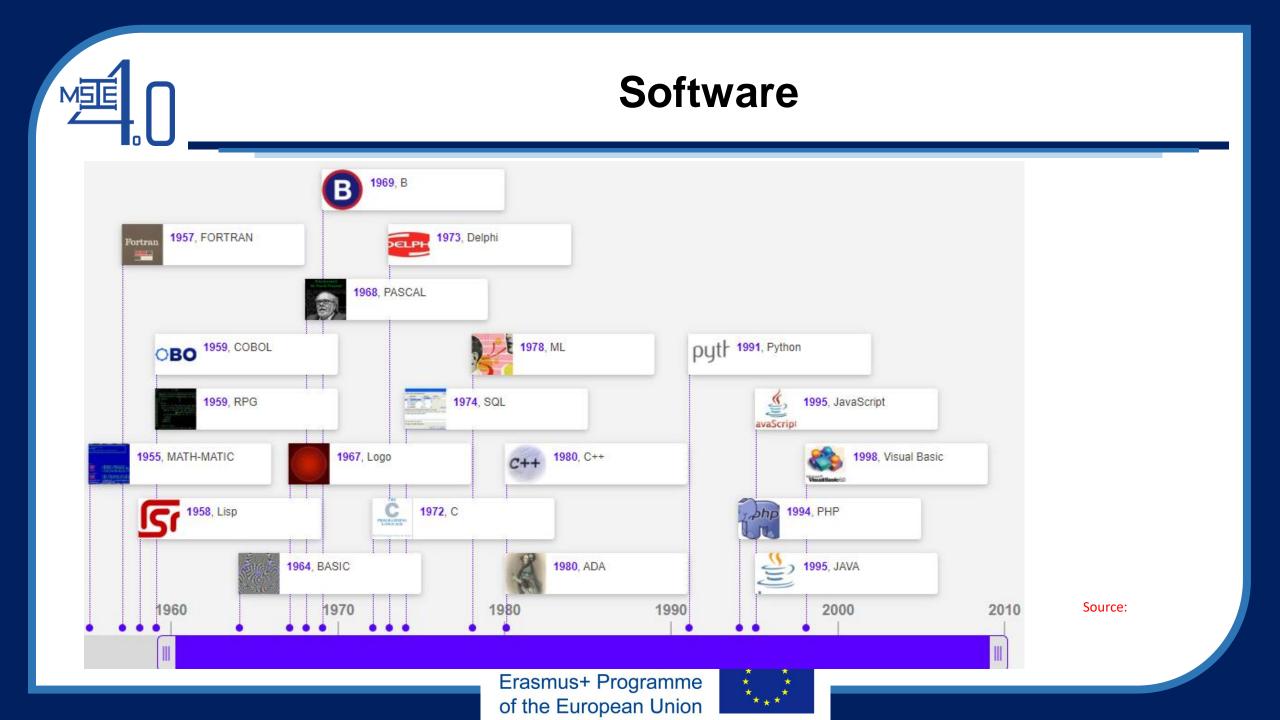


Source: REVISITING THE DIGITAL DIVIDE: COLLECTIVE RESPONSIBILITES AND INDIVIDUAL RESPONSES , 2017

Example of the Use of Digital technology "Machine Learning"

Source: https://data-flair.training/blogs/machine-learning-tutorial/

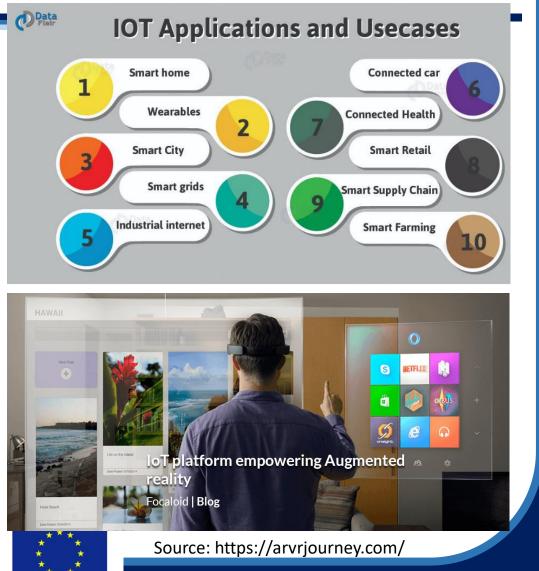
3.1.2 Digital technology hardware & software

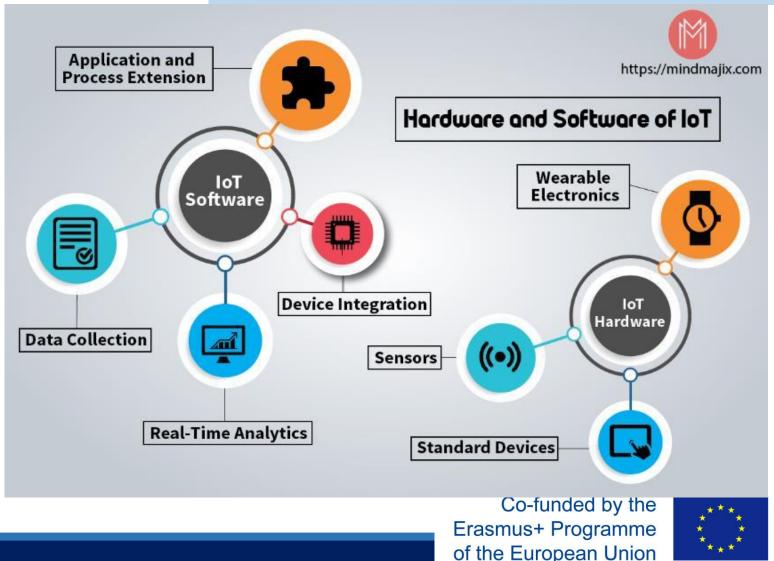

Types of Digital Technology

- Search Engines
- Digital Camera
- Microsoft Office
- 3D Printing
- Wearable Technologies
- Virtual Currencies (Bitcoin)
- Smart Home Technologies

Digital Technology Hardware

- desktop computers.
- laptop computers.
- mobile phones.
- tablet computers.
- e-readers.
- storage devices, such as flash drives.
- input devices, such as keyboards, mice, and scanners.
- output devices such as printers and speakers.




The Key Technologies of I4.0

- The Internet of Things (IoT)
- Cloud Computing (CC)
- Big Data (BD)/Machine Learning
- Simulation
- Augmented Reality (AR) is technology that uses the camera of a tablet or phone to show the real world environment on the screen and then rendering digital assets on the screen combining the digital world with the physical world (Indiecad.com.au).
- Additive Manufacturing (AM):
- Horizontal and Vertical Systems Integration
- Autonomous Robots
- Cyber Security
- 3D Printing

IoT hardware and Software

- IoT Hardware includes a wide range of devices such as devices for routing, bridges, sensors, GPS, camera, or connected devices etc.
- IoT devices manage key tasks and functions such as system activation, security, action specifications, communication, and detection of supportspecific goals and actions.

3.1.3 Digital technology applications

Smart environment application domains.

	Smart home/office	Smart retail	Smart city	Smart agriculture/forest	Smart water	Smart transportation
Network size	Small	Small	Medium	Medium/large	Large	Large
Users	Very few, fam- ily members	Few, community level	Many, policy makers, general public	Few, landowners, policy makers	Few, government	Large, general public
Energy	Rechargeable battery	Rechargeable battery	Rechargeable battery, energy harvesting	Energy harvesting	Energy harvesting	Rechargeable battery, Energy harvesting
Internet connectivity	Wifi, 3G, 4G LTE backbone	Wifi, 3G, 4G LTE backbone	Wifi, 3G, 4G LTE backbone	Wifi, satellite communication	Satellite communication, microwave links	Wifi, satellite communication
Data management	Local server	Local server	Shared server	Local server, shared server	Shared server	Shared server
IoT devices	RFID, WSN	RFID, WSN	RFID, WSN	WSN	Single sensors	RFID, WSN, single sensors
Bandwidth requirement	Small	Small	Large	Medium	Medium	Medium/large
Example testbeds	Aware home [29]	SAP future retail center [30]	Smart Santander [31], citySense [32]	SiSViA [33]	GBROOS [34], SEMAT [35]	A few trial implementations [36,37]

Source: https://www.semanticscholar.org/paper/Internet-of-Things-(IoT)%3A-A-vision%2C-architectural-Gubbi-Buyya/72c4d8b64a9959ea45677ca1955d3491ef0f1c62/figure/1

Assignment I (a group of 3 persons)

- Find an example of the Use of Digital technology in the optimization area such as :
 - Scheduling
 - Transportation
 - Resource allocation
 - Production planning
 - etc
- Discussion on why the industry are using it
- How to apply the Digital technology and constraints

