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Introduction

• A specific type of mathematical programming in which the optimal solution of the

original problem is found by solving a chain of subproblems.

• In dynamic programming, the optimal solution of one subproblem will be used as

input to the next subproblem. When the last subproblem is solved, the optimal

solution for the entire problem is achieved, which includes the solution of the

original problem.

• Linkage between the stages of a DP problem is performed through recursive

computations. Depending on the nature of the problem at hand, forward

recursive equation or backward recursive equation will be developed for finding

solution.



Introduction

Example 1: Shortage Path Problem

Find the shortage path from node 1 to node 9 of the network:

Define:

𝑓𝑖: minimum total travel time from node i to node 9.

𝑡𝑖𝑗 : travel time through the directed arc 𝑖, 𝑗 .
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On an arbitrary arc 𝑖, 𝑗 , it can be seen that:

𝑓𝑖 ≤ 𝑡𝑖𝑗+ 𝑓𝑗 𝑖 ≠ 9, ∀𝑗

Hence:

𝑓𝑖 ≤ min
𝑗

𝑡𝑖𝑗+ 𝑓𝑗 𝑖 ≠ 9

However, the shortage path from node i to node 9 should include some intermediate node j

(if these intermediate nodes exist).  Then,

𝑓𝑖 = min
𝑗

𝑡𝑖𝑗+ 𝑓𝑗 𝑖 ≠ 9

The above equation is the recursive equation (or functional equation) of the shortage path 

problem in the backward form.
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Based on the recursive equation, the optimal solution can be found as
follows:

𝑓9 = 0
𝑓8 = 𝑡89+ 𝑓9 = 10 + 0 = 10
𝑓7 = 𝑡79+ 𝑓9 = 3 + 0 = 3

𝑓6 = min
𝑡68+ 𝑓8
𝑡69+ 𝑓9

= min
7 + 10
15 + 0

= 15

𝑓5 = 𝑡57+ 𝑓7 = 7 + 3 = 10

𝑓4 = min

𝑡45+ 𝑓5
𝑡46+ 𝑓6
𝑡47+ 𝑓7
𝑡48+ 𝑓8

= min

4 + 10
3 + 15
15 + 3
7 + 10

= 14
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𝑓3 = min
𝑡34+ 𝑓4
𝑡36+ 𝑓6

= min
3 + 14
4 + 15

= 17

𝑓2 = min
𝑡24+ 𝑓4
𝑡25+ 𝑓5

= min
6 + 14
12 + 10

= 20

𝑓1 = min
𝑡12+ 𝑓2
𝑡13+ 𝑓3

= min
1 + 20
2 + 17

= 19

Shortage path from node 1 to node 9: 1-3-4-5-7-9 with total
travel time = 19.
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It is noted that each subproblem is associated with a network’s node and

when the shortage path from node 1 to node 9 is determined, we also know

the shortage paths from every nodes of the network to node 9.
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The above problem can also be solved by use of forward recursive equation as presented below

Define:

𝑓𝑗: minimum total travel time from node 1 to node j.

𝑡𝑖𝑗 : travel time through the directed arc 𝑖, 𝑗 .

On an arbitrary arc 𝑖, 𝑗 , it can be seen that:

𝑓𝑗 ≤ 𝑡𝑖𝑗+ 𝑓𝑖 𝑗 ≠ 1, ∀𝑖

Hence:

𝑓𝑗 ≤ min
𝑖

𝑡𝑖𝑗+ 𝑓𝑖 𝑗 ≠ 1

However, the shortage path from node 1 to node j should include some intermediate node i (if these 

intermediate nodes exist).  Then,

𝑓𝑗 = min
𝑖

𝑡𝑖𝑗+ 𝑓𝑖 𝑗 ≠ 1
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Solution can be found recursively as follows:

𝑓1 = 0
𝑓2 = 𝑡12+ 𝑓1 = 1 + 0 = 1

𝑓3 = 𝑡13+ 𝑓1 = 2 + 0 = 2

𝑓4 = min
𝑡24+ 𝑓2
𝑡34+ 𝑓3

= min
6 + 1
3 + 2

= 5

𝑓5 = min
𝑡25+ 𝑓2
𝑡45+ 𝑓4

= min
12 + 1
4 + 5

= 9

𝑓6 = min
𝑡36+ 𝑓3
𝑡64+ 𝑓4

= min
4 + 2
3 + 5

= 6
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𝑓7 = min
𝑡47+ 𝑓4
𝑡57+ 𝑓5

= min
15 + 5
7 + 9

= 16

𝑓8 = min
𝑡48+ 𝑓4
𝑡68+ 𝑓6

= min
7 + 5
7 + 6

= 12

𝑓9 = min

𝑡69+ 𝑓6
𝑡79+ 𝑓7
𝑡89+ 𝑓8

= min
15 + 6
3 + 16
10 + 12

= 19

The solution from forward recursive equation gives the shortage paths from

node 1 to every other nodes of the network, not only to node 9.
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Note:  

Not all DP programs can be solved by both forward and
backward recursive techniques. The use of backward recursion
or forward recursion depends on the specific structure of the
problem under consideration.
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Bellman’s Principle of Optimality

An optimal policy has the property that whatever the initial state and the

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision

The basic DP approach can be illustrated by the following diagram:

sn sn+1

( )Stage 1n +

( ),n n nr s x

Stage n

( )state ( )state
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• At state 𝑠𝑛 in stage 𝑛, if decision 𝑥𝑛 is taken the current state
𝑠𝑛 will be transferred to a new state 𝑠𝑛+1 in stage 𝑛 + 1 .

• A revenue 𝑟𝑛 𝑠𝑛, 𝑥𝑛 will be obtained by decision 𝑥𝑛 taken at
state 𝑠𝑛

• The new state 𝑠𝑛+1 is also a function of 𝑠𝑛 and 𝑥𝑛, and can be
expressed in form of a transformation function: 𝑠𝑛+1 =
𝑡𝑛 𝑠𝑛, 𝑥𝑛 .
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In case of maximization problem and backward recursive
technique is employed, if we denote 𝑓𝑛 𝑠𝑛 as the maximum
total revenue obtained when the system moves from stage 𝑛 to
stage 𝑁 (the last stage), given the observed state at stage 𝑛 is
𝑠𝑛, then:

In which 𝐷 𝑠𝑛 is the set of all possible decisions of a given state
𝑠𝑛 at stage 𝑛 (decision set).

( )
( )

( ) ( )( ) 1max , ,
n n

n n n n n n n n n
x D s

f s r s x f t s x+


= +
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Similarly, when the forward recursive technique is employed, if we
denote 𝑓𝑛 𝑠𝑛 as the maximum total revenue when the system move
from stage 1 to stage 𝑛, given the observed state at stage 𝑛 is 𝑠𝑛,
then:

In which 𝐷 𝑠𝑛+1 is the set of all possible decisions 𝑥𝑛 at stage 𝑛
such that these decisions will help to transfer the states 𝑠𝑛’s at stage
𝑛 to a predefined state 𝑠𝑛+1 in stage 𝑛 + 1 , i.e., 𝑠𝑛+1 = 𝑡𝑛 𝑠𝑛, 𝑥𝑛 .

( )
( )

( ) ( ) 
1

1 1 max ,
n n

n n n n n n n
x D s

f s r s x f s
+

+ +


= +
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Bellman’s Principle of Optimality

The Bellman’ optimality principle can help to establish recursive
equations when the structure of the problem can be arranged in
stages.
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Example 2: Find the shortage path from node 1 to node 10 of
the network
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Applying backward recursive approach, the solution can be found as
follows:

Stage 4:

In stage 4, the state 𝑠4 can be node 8 or node 9, and the only
decision (i.e., 𝑥4) that can be taken is go to node 10.

4x  

4s  

4 4 4 5 4 4 4( , ) ( ( , ))r s x f t s x+  4 4( )f s  *

4x  

10 

Node 8 3 3 10 

Node 9 4 4 10 
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When the state is node 8:

𝑟4 𝑠4, 𝑥4 = 𝑟4 8, 10 = 3 𝑓5 𝑡4 𝑠4, 𝑥4 = 𝑓5 10 = 0

⇒ 𝑓4 𝑠4 = 𝑓4 8 = 3

When the state is node 9:

𝑟4 𝑠4, 𝑥4 = 𝑟4 9, 10 = 4 𝑓5 𝑡4 𝑠4, 𝑥4 = 𝑓5 10 = 0

⇒ 𝑓4 𝑠4 = 𝑓4 9 = 4

Due to the fact that there exists only one possible decision, that
decision is the optimal decision.
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Stage 3:

In this stage, the state 𝑠3 can be node 5, node 6 or node 7. The
decision 𝑥3 can be go to node 8 or go to node 9.

3x  

3s  

3 3 3 4 3 3 3( , ) ( ( , ))r s x f t s x+  3 3( )f s  *

3x  

8 9 

Node 5 1 + 3 = 4 4 + 4 = 8 4 8 

Node 6 6 + 3 = 9 3 + 4 = 7 7 9 

Node 7 3 + 3 = 6 3 + 4 = 7 6 8 
 

3x3s3 3 3 4 3 3 3( , ) ( ( , ))r s x f t s x+3 3( )f s*

3x
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When the state is node 5:

If the decision is go to node 8:

𝑟3 𝑠3, 𝑥3 = 𝑟3 5, 8 = 1 𝑓4 𝑡3 𝑠3, 𝑥3 = 𝑓4 8 = 3

If the decision is go to node 9:

𝑟3 𝑠3, 𝑥3 = 𝑟3 5, 9 = 4 𝑓4 𝑡3 𝑠3, 𝑥3 = 𝑓4 9 = 4

⇒ 𝑓3 𝑠3 = 𝑓3 5 = Min 1 + 3,4 + 4 = 4

⇒ Optimal decision: go to node 8
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When the state is node 6:

If the decision is go to node 8:

𝑟3 𝑠3, 𝑥3 = 𝑟3 6, 8 = 6 𝑓4 𝑡3 𝑠3, 𝑥3 = 𝑓4 8 = 3

If the decision is go to node 9:

𝑟3 𝑠3, 𝑥3 = 𝑟3 6, 9 = 3 𝑓4 𝑡3 𝑠3, 𝑥3 = 𝑓4 9 = 4

⇒ 𝑓3 𝑠3 = 𝑓3 6 = Min 6 + 3,3 + 4 = 7

⇒ Optimal decision: go to node 9
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When the state is node 7:

If the decision is go to node 8:

𝑟3 𝑠3, 𝑥3 = 𝑟3 7, 8 = 3 𝑓4 𝑡3 𝑠3, 𝑥3 = 𝑓4 8 = 3

If the decision is go to node 9:

𝑟3 𝑠3, 𝑥3 = 𝑟3 7, 9 = 3 𝑓4 𝑡3 𝑠3, 𝑥3 = 𝑓4 9 = 4

⇒ 𝑓3 𝑠3 = 𝑓3 7 = Min 3 + 3,3 + 4 = 6

⇒ Optimal decision: go to node 8



Introduction
Bellman’s Principle of Optimality

Stage 2:

In this stage, the state 𝑠2 can be node 2, node 3 or node 4. The
decision 𝑥2 can be go to node 5, go to node 6, or go to node 7.

2x  

2s  

2 2 2 3 2 2 2( , ) ( ( , ))r s x f t s x+  Min

2 2( )f s  

*

2x  

5 6 7 

Node 2 7 + 4 = 11 4 + 7 = 11 6 + 6 = 12 11  5 or 6 

Node 3 3 + 4 = 7 2 + 7 = 9  4 + 6 = 10 7 5 

Node 4 4 + 4 = 8 1 + 7 = 8 5 + 6 = 11 8 5 or 6 
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When the state is node 2:

If the decision is go to node 5:

𝑟2 𝑠2, 𝑥2 = 𝑟2 2, 5 = 7 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 5 = 4

If the decision is go to node 6:

𝑟2 𝑠2, 𝑥2 = 𝑟2 2, 6 = 4 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 6 = 7

If the decision is go to node 7:

𝑟2 𝑠2, 𝑥2 = 𝑟2 2, 7 = 6 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 7 = 6

⇒ 𝑓2 𝑠2 = 𝑓2 2 = Min 7 + 4, 4 + 7, 6 + 6 = 11
⇒ Optimal decision: go to node 5 or go to node 6
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When the state is node 3:

If the decision is go to node 5:

𝑟2 𝑠2, 𝑥2 = 𝑟2 3, 5 = 3 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 5 = 4

If the decision is go to node 6:

𝑟2 𝑠2, 𝑥2 = 𝑟2 3, 6 = 2 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 6 = 7

If the decision is go to node 7:

𝑟2 𝑠2, 𝑥2 = 𝑟2 3, 7 = 4 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 7 = 6

⇒ 𝑓2 𝑠2 = 𝑓2 3 = Min 3 + 4, 2 + 7, 4 + 6 = 7
⇒ Optimal decision: go to node 5
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When the state is node 4:

If the decision is go to node 5:

𝑟2 𝑠2, 𝑥2 = 𝑟2 4, 5 = 4 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 5 = 4

If the decision is go to node 6:

𝑟2 𝑠2, 𝑥2 = 𝑟2 4, 6 =1 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 6 = 7

If the decision is go to node 7:

𝑟2 𝑠2, 𝑥2 = 𝑟2 4, 7 = 5 𝑓3 𝑡2 𝑠2, 𝑥2 = 𝑓3 7 = 6

⇒ 𝑓2 𝑠2 = 𝑓2 3 = Min 4 + 4, 1 + 7, 5 + 6 = 8
⇒ Optimal decision: go to node 5 or go to node 6
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Stage 1:

In this stage, the state 𝑠1 is node 1. The decisions 𝑥1 can be go
to node 2, go to node 3, or go to node 4.

1x  

1s  

1 1 1 2 1 1 1( , ) ( ( , ))r s x f t s x+  1 1( )f s  *

1x  

2 3 4 

Node 1 2 + 11 = 13 4 + 7 = 11 3 + 8 = 11 11 3 or 4 
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If the decision is go to node 2:

𝑟1 𝑠1, 𝑥1 = 𝑟1 1, 2 = 2 𝑓2 𝑡1 𝑠1, 𝑥1 = 𝑓2 2 = 11

If the decision is go to node 3:

𝑟1 𝑠1, 𝑥1 = 𝑟1 1, 3 = 4 𝑓2 𝑡1 𝑠1, 𝑥1 = 𝑓2 3 = 7

If the decision is go to node 7:

𝑟1 𝑠1, 𝑥1 = 𝑟1 1, 4 = 3 𝑓2 𝑡1 𝑠1, 𝑥1 = 𝑓2 4 = 8

⇒ 𝑓1 𝑠1 = 𝑓1 1 = Min 2 + 11, 4 + 7, 3 + 8 = 11

⇒ Optimal decision: go to node 3 or go to node 4
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The optimal solution has been found. There exist three shortage
paths from node 1 to node 10:

1-3-5-8-10, 1-4-5-8-10, 1-4-6-9-10
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Example 3:

Five medical teams will be
dispatched to 3 regions to help
improve medical care. The
performance is measured by the
expected additional person-years of
life. The estimated performance
measures are given in the table:

No. of 
Teams

Additional person-years life
(in 1000 units)

Region 1 Region 2 Region 3
0
1
2
3
4
5

0
45
70
90

105
120

0
20
45
75

110
150

0
50
70
80

100
130
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The problem is to allocate the medical teams so that the total additional
person-years of life can be maximized.

Denote:

𝑥𝑛 : number of teams to be allocated to region n (n = 1, 2, 3).

𝑠𝑛 : number of teams available for allocation to the regions

n, n +1,…, 3.

𝑝𝑛 𝑥𝑛 : the measure of performance from allocation 𝑥𝑛 teams to region n.

𝑓𝑛 𝑠𝑛 : Total maximum performance obtained when 𝑠𝑛 teams are

allocated to regions n, n +1,…, 3.
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The problem can be formulated as follows:

𝑓1 5 = Max 𝑝1 𝑥1 + 𝑝2 𝑥2 + 𝑝3 𝑥3
s.t. 𝑥1 + 𝑥2 + 𝑥3 ≤ 5

𝑥𝑗 ≥ 0 and integer ∀𝑗 = 1,2,3

The above problem can be considered as embedded in the following chains of

subproblems:

𝑓𝑛 𝑠𝑛 = Max σ𝑖=𝑛
3 𝑝𝑖 𝑥𝑖

s.t. σ𝑖=𝑛
3 𝑥𝑖 ≤ 𝑠𝑛

𝑥𝑗 ≥ 0 and integer ∀𝑗 = 𝑛,… , 3
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The backward recursive equation can be developed as:

Noting that 𝑓4 𝑠4 = 0, the solution can be obtained as follows:

( ) ( ) ( ) 1
0

 integer

max
n n

n

n n n n n n n
x s

x

f s p x f s x+
 

= + −
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𝒏 = 𝟑
 

No. of 

teams 
3 3 4 4 3 3 4 3 3( ) ( ) ( ) ( )p x f s p x f s x+ = + −  Max 

3 3( )f s  

*

3x  

3 0x =  3 1x =  3 2x =  3 3x =  =3 4x  3 5x =  

3 0s =  0 - - - - - 0 0 

3 1s =  0 50 - - - - 50 1 

3 2s =  0 50 70 - - - 70 2 

3 3s =  0 50 70 80 - - 80 3 

3 4s =  0 50 70 80 100 - 100 4 

3 5s =  0 50 70 80 100 130 130 5 
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𝒏 = 𝟐

No. of 

teams 
2 2 3 3 2 2 3 2 2( ) ( ) ( ) ( )p x f s p x f s x+ = + −  Max 

2 2( )f s  

*

2x  

2 0x =  2 1x =  2 2x =  2 3x =  =2 4x  2 5x =  

2 0s =  0+0 

= 0 

- - - - - 0 0 

2 1s =  0+50 

= 50 

20+0 

= 20 

- - - - 50 0 

2 2s =  0+70 

= 70 

20+50 

= 70 

45+0 

= 45 

- - - 70 0-1 

2 3s =  0+80 

= 80 

20+70 

= 90 

45+50 

= 95 

75+0 

= 75 

- - 95 2 

2 4s =  0+100 

= 100 

20+80 

= 100 

45+70 

= 115 

75+50 

= 125 

110+0 

= 110 

- 125 3 

2 5s =  0+130 

= 130 

20+100 

= 120 

45+80 

= 125 

75+70 

= 145 

110+50 

= 160 

150+0 

= 150 

160 4 
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𝒏 = 𝟏

(*: no need to determine those values)

Optimal solution: 𝑥1
∗ = 1, 𝑥2

∗ = 3, 𝑥3
∗ = 1; optimal objective function 170.

No. of 

teams 
1 1 2 2 1 1 2 1 1( ) ( ) ( ) ( )p x f s p x f s x+ = + −  Max 

1 1( )f s  

*

1x  

1 0x =  1 1x =  1 2x =  1 3x =  1 4x =  1 5x =  

1 0s =  * - - - - - * * 

1 1s =  * * - - - - * * 

1 2s =  * * * - - - * * 

1 3s =  * * * * - - * * 

1 4s =  * * * * * - * * 

1 5s =  0+160 

= 160 

45+125 

= 170 

70+95 

= 165 

90+70 

= 160 

115+50 

= 165 

120+0 

= 120 

170 1 

 



Introduction
Bellman’s Principle of Optimality

Example 4: Resource Allocation Problem

Consider the single resource allocation problem to produce N products:

Max 𝑝1 𝑥1 + 𝑝2 𝑥2 +⋯+ 𝑝𝑁 𝑥𝑁
s.t. 𝑐1 𝑥1 + 𝑐2 𝑥2 +⋯+ 𝑐𝑁 𝑥𝑁 ≤ 𝐾

𝑥𝑗 ∈ Ω𝑗 ∀𝑗 = 1,2,… , 𝑁

In which:

𝑝𝑗 𝑥𝑗 : profit obtained by producing 𝑥𝑗 units of product j.

𝑐𝑗 𝑥𝑗 : units of the resource consumed for producing 𝑥𝑗 units of product j.

Ω𝑗 : the set of possible production levels for product j.

The above problem can be solved by dynamic programming
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The embedded problem in backward recursive form

Define:

• 𝑛, 𝑦 : state - y units of resource are allocated to produce
products from n through N.

• 𝑓𝑛 𝑦 : maximum total profit obtained from products n through
N, when y units of resource are allocated to them.

• 𝑓1 𝐾 : the optimal value to be determined.
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Notes:

1. 𝑓𝑛 𝑦 can be expressed as:

Max 𝑝𝑛 𝑥𝑛 +⋯+ 𝑝𝑁 𝑥𝑁
s.t. 𝑐𝑛 𝑥𝑛 +⋯+ 𝑐𝑁 𝑥𝑁 ≤ 𝑦

𝑥𝑗 ∈ Ω𝑗 ∀𝑗 = 𝑛,… ,𝑁

The problem 𝑓1 𝐾 is embedded in the above problems: 𝑓𝑛 𝑦
for 𝑛 = 1,2, … ,𝑁 and 𝑦 = 0,1,2, … , 𝐾
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2. Boundary conditions:

Max 𝑓𝑁 𝑦 = Max 𝑝𝑁 𝑥𝑁
s.t. 𝑐𝑁 𝑥𝑁 ≤ 𝑦

𝑥𝑁 ∈ Ω𝑁
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Backward recursive equation:

𝑓𝑛 𝑦 = max
𝑐𝑛 𝑥𝑛 ≤𝑦
𝑥𝑛∈Ω𝑛

𝑝𝑛 𝑥𝑛 + 𝑓𝑛+1 𝑦 − 𝑐𝑛 𝑥𝑛

In this case, we have:

𝑠𝑛 = 𝑛, 𝑦 ; 𝐷 𝑠𝑛 = 𝑥 ∈ Ω𝑛 𝑐𝑛 𝑥 ≤ 𝑦 ; and 
𝑠𝑛+1 = 𝑡𝑛 𝑠𝑛, 𝑥 = 𝑛 + 1, 𝑦 − 𝑐𝑛 𝑥
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The embedded problem in forward recursive form

Define:

• 𝑛, 𝑦 : state - y units of resource are allocated to produce
products from 1 to n.

• 𝑓𝑛 𝑦 : maximum total profit obtained from products 1 through
n, when y units of resource are allocated to them.

• 𝑓𝑁 𝐾 : the optimal value to be determined.
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Forward recursive equation:

𝑓𝑛 𝑦 = max
𝑐𝑛 𝑥𝑛 ≤𝑦
𝑥𝑛∈Ω𝑛

𝑝𝑛 𝑥𝑛 + 𝑓𝑛−1 𝑦 − 𝑐𝑛 𝑥𝑛

In this case, we still have:

𝑠𝑛 = 𝑛, 𝑦 ; 𝐷 𝑠𝑛 = 𝑥 ∈ Ω𝑛 𝑐𝑛 𝑥 ≤ 𝑦 ; and 

𝑠𝑛−1 = 𝑡𝑛 𝑠𝑛, 𝑥 = 𝑛 − 1, 𝑦 − 𝑐𝑛 𝑥 .


