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Optimality Conditions for Unconstrained Optimization

Consider an unconstrained minimization problem:  

min
𝑥∈𝑅𝑛

𝑓 𝐱

Then,

1. 𝐱∗ is a local minimum, if there exists 𝜀 > 0 such that 

𝑓 𝐱 ≥ 𝑓 𝐱∗ for any 𝐱 ∈ 𝑁𝜀 𝐱∗ = 𝐱 ∈ 𝑅𝑛 σ𝑖=1
𝑛 𝑥𝑖 − 𝑥𝑖

∗ 2
< 𝜀

i.e., 𝐱∗ is the best among its neighborhood.

2. 𝐱∗ is a strict local minimum if 𝑓 𝐱 > 𝑓 𝐱∗ ∀𝐱 ≠ 𝐱∗ in the neighborhood of 𝐱∗

3. ∇𝑓 𝐱 and ∇2𝑓 𝐱 are called the first order and the second order conditions



Optimality Conditions for Unconstrained Optimization

Theoretical Review
Definition 1:

A square matrix A is said to be positive definite (or negative definite) if the

quadratic form 𝐱𝑇𝐀𝐱 = σ𝑖σ𝑗 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 > 0 (or < 0) for all 𝐱 ≠ 𝟎 ∈ 𝑅𝑛.

Definition 2:

A square matrix A is said to be positive semidefinite (or negative semidefinite) if

the quadratic form 𝐱𝑇𝐀𝐱 = σ𝑖σ𝑗 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 > 0 (or ≤ 0 ) for all 𝐱 ≠ 𝟎 ∈ 𝑅𝑛.

Definition 3:

𝜆 ∈ 𝑅 is an eigen value of a square matrix A if ∃𝐱 ≠ 𝟎 ∈ 𝑅𝑛 such that 𝐀𝐱 = 𝜆𝐱



Optimality Conditions for Unconstrained Optimization

Properties:

1. 𝜆 is an eigen value of a square matrix A if and only if 𝜆 is a root of

the following characteristic function of A: 𝜑𝐴 𝑥 = 𝑑𝑒𝑡 𝐀 − 𝑥𝐈 ,

which is a polynomial of degree n.

2. A square matrix A is positive (negative) definite if all its eigen

values are positive (negative).

3. A square matrix A is positive (negative) semidefinite if all its eigen 

values are nonnegative (nonpositive).



Optimality Conditions for Unconstrained Optimization

4. Consider square matrix 

Define:
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Optimality Conditions for Unconstrained Optimization

• The matrix A will be positive definite if and only if all the values 

𝐴1, 𝐴2, … , 𝐴𝑛 are positive

• The matrix A will be negative definite if and only if the sign of 𝐴𝑗
is −1 𝑗 for 𝑗 = 1,2,… , 𝑛

• If some of the 𝐴𝑗 are positive and the remaining are zero, the 

matrix A will be positive semidefinite



Optimality Conditions for Unconstrained Optimization

Theorem: Second Order Necessary Conditions for Optimality

If 𝐱∗ is a local minimum, then ∇𝑓 𝐱∗ = 𝟎, and ∇2𝑓 𝐱∗ is positive
semidefinite.

∇2𝑓 𝐱 =
𝜕2𝑓 𝐱

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖, 𝑗 = 1,2,… , 𝑛 is called the Hessian matrix of 

𝑓 𝐱



Optimality Conditions for Unconstrained Optimization

Proof:

We have: 𝑓 𝐱∗ + 𝑑𝐱 − 𝑓 𝐱∗ ≥ 0.  

1.  By using Taylor’s series expansion:

Note that 𝑑𝐱 might be positive (> 𝟎 ) or negative (< 𝟎 ). Hence, (*) holds true if and only if

∇𝑓 𝐱∗ 𝑇𝑑𝐱 = 0 or equivalently, ∇𝑓 𝐱∗ = 𝟎.
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Optimality Conditions for Unconstrained Optimization

2.  We also have:

Hence, 𝑑𝐱 𝑇∇2𝑓 𝐱∗ 𝑑𝐱 ≥ 0 ⇒ ∇2𝑓 𝐱∗ is positive semidefinite.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T T* * * 2 *

T T* 2 *

T 2 *

1
...

2!

1
.

2!

1
.

2!

f d f f d d f d

f d d f d O

d f d O

+ − =  +  +

=  +  +

=  +

x x x x x x x x

x x x x x

x x x



Optimality Conditions for Unconstrained Optimization

Note: 

“ ∇𝑓 𝐱∗ = 𝟎 and ∇2𝑓 𝐱∗ is positive semidefinite” does not
necessarily imply that 𝐱∗ is a local minimum. For example,
consider 𝑓 𝑥 = 𝑥3 and 𝑥∗ = 0. It can be checked that 𝑥∗ is not

a local minimum although 𝑓′ 𝑥∗ = 3𝑥∗2 = 0 and 𝑓′′ 𝑥∗ = 6𝑥∗ =
0 is positive semidefinite.



Optimality Conditions for Unconstrained Optimization

Theorem: Second Order Sufficient Conditions for Optimality

If satisfies ∇𝑓 𝐱∗ = 𝟎 and ∇2𝑓 𝐱∗ is positive definite, then 𝐱∗ is a
strict local minimum.

Proof:

𝑓 𝐱∗ + 𝑑𝐱 − 𝑓 𝐱∗ = ∇𝑓 𝐱∗ 𝑇 +
1

2!
𝑑𝐱 𝑇∇2𝑓 𝐱∗ 𝑑𝐱 + 𝑂(. )

Due to ∇2𝑓 𝐱∗ is positive definite: 𝑑𝐱 𝑇∇2𝑓 𝐱∗ 𝑑𝐱 > 0
Hence, 𝑓 𝐱∗ + 𝑑𝐱 − 𝑓 𝐱∗ > 0. This means that 𝐱∗ is a strict local
minimum.
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Note: 

“𝐱∗ is a strict local minimum” does not imply that “∇𝑓 𝐱∗ = 𝟎 and
∇2𝑓 𝐱∗ is positive definite”. For example, consider 𝑓 𝑥 = 𝑥1

4 +
𝑥2
4 and 𝐱∗ = 𝟎. It is easily to prove that 𝐱∗ = 𝟎 is a strict local

minimum (actually, a strict global minimum). However,

∇𝑓 𝐱∗ =
4𝑥1

∗3

2𝑥2
∗ =

0
0

But ∇2𝑓 𝐱∗ = 12𝑥1
∗3 0

0 2
=

0 0
0 2

is not positive definite!



Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

Definition 4: 𝑓 . is convex over convex set 𝑆 if for any 𝐱, 𝐲 ∈ 𝑆

𝑓 𝜆𝐱 + 1 − 𝜆 𝐲 ≤ 𝜆𝑓 𝐱 + 1 − 𝜆 𝑓 𝐲 ∀𝜆 ∈ 0,1

Theorem: 𝑓 . is convex over convex set 𝑆 if and only if

𝑓 𝐲 ≥ 𝑓 𝐲 + ∇𝑓 𝐱 𝑇 𝐲 − 𝐱 ∀𝐱, 𝐲 ∈ 𝑆



Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

Proof:

1.  Assume that 𝑓 . is convex over 𝑆.  We have

𝑓 1 − 𝜆 𝐱 + 𝜆𝐲 ≤ 1 − 𝜆 𝑓 𝐱 + 𝜆𝑓 𝐲

⇒ 𝑓 𝐱 + 𝜆 𝐲 − 𝐱 − 𝑓 𝐱 ≤ 𝜆 𝑓 𝐲 − 𝑓 𝐱

⇒ ∇𝑓 𝐱 𝑇 𝐲 − 𝐱 = lim
𝜆→0

𝑓 𝐱+𝜆 𝐲−𝐱 −𝑓 𝐱

𝜆
≤ 𝑓 𝐲 − 𝑓 𝐱

(Note that: lim
𝜆→0

𝑓 𝐱+𝜆𝐝 −𝑓 𝐱

𝜆
= ∇𝑓 𝐱 𝑇𝐝 )

Hence, 𝑓 𝐲 ≥ 𝑓 𝐲 + ∇𝑓 𝐱 𝑇 𝐲 − 𝐱



Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

2.  Assume that 𝑓 𝐲 ≥ 𝑓 𝐲 + ∇𝑓 𝐱 𝑇 𝐲 − 𝐱 ∀𝐱, 𝐲 ∈ 𝑆

Let 𝐳 = 𝜆𝐱 + 1 − 𝜆 𝐲.  By the assumption, we have

𝑓 𝐱 ≥ 𝑓 𝒛 + ∇𝑓 𝒛 𝑇 𝐱 − 𝒛 and 𝑓 𝒚 ≥ 𝑓 𝒛 + ∇𝑓 𝒛 𝑇 𝐲 − 𝒛

Multiply the two inequalities by 𝜆 and 1 − 𝜆 , respectively, and summing them up,

we have

𝜆𝑓 𝐱 + 1 − 𝜆 𝑓 𝐲 ≥ 𝑓 𝒛 + ∇𝑓 𝒛 𝑇 𝜆 𝐱 − 𝒛 + 1 − 𝜆 𝐲 − 𝒛

or 𝜆𝑓 𝐱 + 1 − 𝜆 𝑓 𝐲 ≥ 𝑓 𝒛 = 𝑓 𝜆𝐱 + 1 − 𝜆 𝐲

Hence, 𝑓 . is convex.



Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

Theorem: Global Optimality for Convex Function

For a convex function 𝑓 𝐱 , if 𝐱∗ satisfies ∇𝑓 𝐱∗ = 𝟎, then 𝐱∗ is a global minimum.  

Conversely, if 𝐱∗ is a global minimum, then ∇𝑓 𝐱∗ = 𝟎.

Proof:

Consider ∀𝐱 ∈ 𝑆 (𝑆 : convex set), assume that 𝑓 . is a differentiable convex 

function, we have

𝑓 𝐱 − 𝑓 𝐱∗ ≥ 𝑓 𝐱∗ + ∇𝑓 𝐱∗ 𝑇 𝐱 − 𝐱∗

If ∇𝑓 𝐱∗ = 𝟎 then 𝑓 𝐱 − 𝑓 𝐱∗ ≥ 𝟎, i.e., 𝐱∗ is a global minimum



Optimality Conditions for Constrained Optimization

Consider the problem

(P) Min 𝑧 = 𝑓 𝐱
s.t. 𝑔𝑖 𝐱 ≥ 0 𝑖 = 1,2, … ,𝑚

The Lagrangian function of the problem is defined as:

𝐿 𝐱, 𝛌 = 𝑓 𝐱 −෍

𝑖=1

𝑚

𝜆𝑖𝑔𝑖 𝐱

In which 𝜆𝑖’s (𝑖 = 1,2, … ,𝑚) are Lagrange multipliers.



Optimality Conditions for Constrained Optimization
The Karush-Kuhn-Tucker (KKT) Necessary Condition

If 𝐱∗ is a local minimum of (P), then there should exist 𝛌∗ such 
that 𝐱∗ and 𝛌∗ are the solutions of:

𝜆𝑖
∗ ≥ 0 𝑖 = 1,2,… ,𝑚

∇𝑓 𝐱∗ −σ𝑖=1
𝑚 𝜆𝑖

∗∇𝑔𝑖 𝐱
∗ = 𝟎

𝜆𝑖
∗𝑔𝑖 𝐱

∗ = 0 𝑖 = 1,2,… ,𝑚

𝑔𝑖 𝐱 ≥ 0 𝑖 = 1,2,… ,𝑚



Optimality Conditions for Constrained Optimization
The Karush-Kuhn-Tucker (KKT) Necessary Condition

Notes:

• If the constraint is 𝑔𝑖 𝐱 ≥ 0 then the condition of 𝜆𝑖
∗ is: 𝜆𝑖

∗ ≤ 0

• If the constraint is 𝑔𝑖 𝐱 ≥ 0 then 𝜆𝑖
∗ is unrestricted in sign

The KKT condition is also sufficient if program (P) is a convex
program, i.e., if (𝐱∗, 𝛌∗) satisfies the KKT conditions then 𝐱∗ is a
global minimum for (P)
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Convex Program

Consider the program:

(P) Min 𝑧 = 𝑓 𝐱
s.t. 𝑔𝑖 𝐱 ≤ 0 𝑖 = 1,2,… , 𝑟

𝑔𝑖 𝐱 ≥ 0 𝑖 = 𝑟 + 1,… , 𝑝
𝑔𝑖 𝐱 = 0 𝑖 = 𝑝 + 1,… ,𝑚

The above program is a convex program if 

• 𝑓 𝐱 is a convex function
• 𝑔𝑖 𝐱 (𝑖 = 1,2,… , 𝑟 ) are convex functions
• 𝑔𝑖 𝐱 (𝑖 = 𝑟 + 1,… , 𝑝 ) are concave functions
• 𝑔𝑖 𝐱 (𝑖 = 𝑝 + 1,… ,𝑚 ) are linear functions
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Example:  Consider the problem

(P) Min 𝑓 𝐱 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2

s.t. 𝑔1 𝐱 = 2𝑥1 + 𝑥2 − 5 ≤ 0
𝑔2 𝐱 = 𝑥1 + 𝑥3 − 2 ≤ 0
𝑔3 𝐱 = −𝑥1 + 1 ≤ 0
𝑔4 𝐱 = −𝑥2 + 2 ≤ 0
𝑔5 𝐱 = −𝑥3 ≤ 0

The above program is a convex program. 
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The KKT conditions are given as:

The solution (global minimum) is: 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 0 (𝜆1 = 𝜆2 = 𝜆5 = 0, 𝜆3 = −2, 𝜆4 =
− 4)
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