Co-funded by the Erasmus+ Programme of the European Union

 Advanced Optimization: Techniques and Industrial Applications

Curriculum Development
of Master's Degree Program in

M司
 Optimality Conditions for Unconstrained Optimization

Consider an unconstrained minimization problem:

$$
\min _{x \in R^{n}} f(\mathbf{x})
$$

Then,

1. \mathbf{x}^{*} is a local minimum, if there exists $\varepsilon>0$ such that

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right) \text { for any } \mathbf{x} \in N_{\varepsilon}\left(\mathbf{x}^{*}\right)=\left\{\mathbf{x} \in R^{n} \mid \sqrt{\sum_{i=1}^{n}\left(x_{i}-x_{i}^{*}\right)^{2}}<\varepsilon\right\}
$$

i.e., x^{*} is the best among its neighborhood.
2. $\quad \mathbf{x}^{*}$ is a strict local minimum if $f(\mathbf{x})>f\left(\mathbf{x}^{*}\right) \forall \mathbf{x} \neq \mathbf{x}^{*}$ in the neighborhood of \mathbf{x}^{*}
3. $\nabla f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$ are called the first order and the second order conditions

MEE
 Optimality Conditions for Unconstrained Optimization

Theoretical Review

Definition 1:
A square matrix \mathbf{A} is said to be positive definite (or negative definite) if the quadratic form $\mathbf{x}^{T} \mathbf{A x}=\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}>0$ (or <0) for all $\mathbf{x} \neq \mathbf{0} \in R^{n}$.

Definition 2:
A square matrix A is said to be positive semidefinite (or negative semidefinite) if the quadratic form $\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}>0$ (or ≤ 0) for all $\mathbf{x} \neq \mathbf{0} \in R^{n}$.

Definition 3:
$\lambda \in R$ is an eigen value of a square matrix \mathbf{A} if $\exists \mathbf{x} \neq \mathbf{0} \in R^{n}$ such that $\mathbf{A x}=\lambda \mathbf{x}$

M司E Optimality Conditions for Unconstrained Optimization

Properties:

1. λ is an eigen value of a square matrix \mathbf{A} if and only if λ is a root of the following characteristic function of $\mathbf{A}: \varphi_{A}(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$, which is a polynomial of degree n.
2. A square matrix \mathbf{A} is positive (negative) definite if all its eigen values are positive (negative).
3. A square matrix \mathbf{A} is positive (negative) semidefinite if all its eigen values are nonnegative (nonpositive).

M馬 Optimality Conditions for Unconstrained Optimization

4. Consider square matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Define:

$$
A_{1}=\left|a_{11}\right| \quad A_{2}=\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \quad \ldots \quad A_{n}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

M馬 Optimality Conditions for Unconstrained Optimization

- The matrix \mathbf{A} will be positive definite if and only if all the values $A_{1}, A_{2}, \ldots, A_{n}$ are positive
- The matrix A will be negative definite if and only if the sign of A_{j} is $(-1)^{j}$ for $j=1,2, \ldots, n$
- If some of the A_{j} are positive and the remaining are zero, the matrix A will be positive semidefinite

M氞 Optimality Conditions for Unconstrained Optimization

Theorem: Second Order Necessary Conditions for Optimality

If \mathbf{x}^{*} is a local minimum, then $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$, and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive semidefinite.
$\nabla^{2} f(\mathbf{x})=\left\{\left.\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \right\rvert\, i, j=1,2, \ldots, n\right\}$ is called the Hessian matrix of $f(\mathbf{x})$

M馬
 Optimality Conditions for Unconstrained Optimization

Proof:

We have: $f\left(\mathbf{x}^{*}+d \mathbf{x}\right)-f\left(\mathbf{x}^{*}\right) \geq 0$.

1. By using Taylor's series expansion:

$$
\begin{align*}
& \begin{array}{l}
f\left(\mathbf{x}^{*}+d \mathbf{x}\right)=f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}} d \mathbf{x}+\frac{1}{2!}(d \mathbf{x})^{\mathrm{T}} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x}+\ldots \\
\quad=f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}} d \mathbf{x}+O(.) \\
\Rightarrow f\left(\mathbf{x}^{*}+d \mathbf{x}\right)-f\left(\mathbf{x}^{*}\right)=\nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}} d \mathbf{x}+O(.) \\
\Rightarrow \nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}} d \mathbf{x}+O(.) \geq 0
\end{array}
\end{align*}
$$

Note that $d \mathbf{x}$ might be positive ($>\mathbf{0}$) or negative ($<\mathbf{0}$). Hence, (${ }^{*}$) holds true if and only if $\nabla f\left(\mathbf{x}^{*}\right)^{T} d \mathbf{x}=0$ or equivalently, $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$.

M馬
 Optimality Conditions for Unconstrained Optimization

2. We also have:

$$
\begin{aligned}
f\left(\mathbf{x}^{*}+d \mathbf{x}\right)-f\left(\mathbf{x}^{*}\right) & =\nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}} d \mathbf{x}+\frac{1}{2!}(d \mathbf{x})^{\mathrm{T}} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x}+\ldots \\
& =\nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}} d \mathbf{x}+\frac{1}{2!}(d \mathbf{x})^{\mathrm{T}} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x}+O(.) \\
& =\frac{1}{2!}(d \mathbf{x})^{\mathrm{T}} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x}+O(.)
\end{aligned}
$$

Hence, $(d \mathbf{x})^{T} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x} \geq 0 \Rightarrow \nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive semidefinite.

MEE Optimality Conditions for Unconstrained Optimization

Note:

$" \nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive semidefinite" does not necessarily imply that \mathbf{x}^{*} is a local minimum. For example, consider $f(x)=x^{3}$ and $x^{*}=0$. It can be checked that x^{*} is not a local minimum although $f^{\prime}\left(x^{*}\right)=3 x^{* 2}=0$ and $f^{\prime \prime}\left(x^{*}\right)=6 x^{*}=$ 0 is positive semidefinite.

M馬 Optimality Conditions for Unconstrained Optimization

Theorem: Second Order Sufficient Conditions for Optimality

If satisfies $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, then \mathbf{x}^{*} is a strict local minimum.

Proof:

$$
f\left(\mathbf{x}^{*}+d \mathbf{x}\right)-f\left(\mathbf{x}^{*}\right)=\nabla f\left(\mathbf{x}^{*}\right)^{T}+\frac{1}{2!}(d \mathbf{x})^{T} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x}+O(.)
$$

Due to $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite: $(d \mathbf{x})^{T} \nabla^{2} f\left(\mathbf{x}^{*}\right) d \mathbf{x}>0$ Hence, $f\left(\mathbf{x}^{*}+d \mathbf{x}\right)-f\left(\mathbf{x}^{*}\right)>0$. This means that \mathbf{x}^{*} is a strict local minimum.

M馬 Optimality Conditions for Unconstrained Optimization

Note:

" \mathbf{x}^{*} is a strict local minimum" does not imply that " $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite". For example, consider $f(x)=x_{1}^{4}+$ x_{2}^{4} and $\mathbf{x}^{*}=\mathbf{0}$. It is easily to prove that $\mathbf{x}^{*}=\mathbf{0}$ is a strict local minimum (actually, a strict global minimum). However,

$$
\nabla f\left(\mathbf{x}^{*}\right)=\left[\begin{array}{l}
4 x_{1}^{*^{3}} \\
2 x_{2}^{*}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

But $\quad \nabla^{2} f\left(\mathbf{x}^{*}\right)=\left[\begin{array}{cc}12 x_{1}^{* 3} & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right]$ is not positive definite!

Optimality Conditions for Unconstrained Optimization Convex Function and Global Optimality

Definition 4: $f($.$) is convex over convex set S$ if for any $\mathbf{x}, \mathbf{y} \in S$

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \quad \forall \lambda \in(0,1)
$$

Theorem: $f($.$) is convex over convex set S$ if and only if

$$
f(\mathbf{y}) \geq f(\mathbf{y})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \in S
$$

Optimality Conditions for Unconstrained Optimization Convex Function and Global Optimality

Proof:

1. Assume that $f($.$) is convex over S$. We have

$$
\begin{array}{ll}
& f((1-\lambda) \mathbf{x}+\lambda \mathbf{y}) \leq(1-\lambda) f(\mathbf{x})+\lambda f(\mathbf{y}) \\
\Rightarrow & f(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}))-f(\mathbf{x}) \leq \lambda(f(\mathbf{y})-f(\mathbf{x})) \\
\Rightarrow & \nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})=\lim _{\lambda \rightarrow 0} \frac{f(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}))-f(\mathbf{x})}{\lambda} \leq f(\mathbf{y})-f(\mathbf{x})
\end{array}
$$

(Note that: $\lim _{\lambda \rightarrow 0} \frac{f(\mathbf{x}+\lambda \mathbf{d})-f(\mathbf{x})}{\lambda}=\nabla f(\mathbf{x})^{T} \mathbf{d}$)
Hence,

$$
f(\mathbf{y}) \geq f(\mathbf{y})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})
$$

Optimality Conditions for Unconstrained Optimization Convex Function and Global Optimality

2. Assume that $f(\mathbf{y}) \geq f(\mathbf{y})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \in S$

Let $\mathbf{z}=\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$. By the assumption, we have

$$
f(\mathbf{x}) \geq f(\mathbf{z})+\nabla f(\mathbf{z})^{T}(\mathbf{x}-\mathbf{z}) \text { and } f(\mathbf{y}) \geq f(\mathbf{z})+\nabla f(\mathbf{z})^{T}(\mathbf{y}-\mathbf{z})
$$

Multiply the two inequalities by λ and $(1-\lambda)$, respectively, and summing them up, we have

$$
\begin{gathered}
\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \geq f(\mathbf{z})+\nabla f(\mathbf{z})^{T}[\lambda(\mathbf{x}-\mathbf{z})+(1-\lambda)(\mathbf{y}-\mathbf{z})] \\
\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \geq f(\mathbf{z})=f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})
\end{gathered}
$$

or
Hence, $f($.$) is convex.$

Optimality Conditions for Unconstrained Optimization Convex Function and Global Optimality

Theorem: Global Optimality for Convex Function

For a convex function $f(\mathbf{x})$, if \mathbf{x}^{*} satisfies $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$, then \mathbf{x}^{*} is a global minimum.
Conversely, if \mathbf{x}^{*} is a global minimum, then $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$.

Proof:

Consider $\forall \mathbf{x} \in S$ (S : convex set), assume that $f($.$) is a differentiable convex$ function, we have

$$
f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \geq f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

If $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ then $f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \geq \mathbf{0}$, i.e., \mathbf{x}^{*} is a global minimum

Optimality Conditions for Constrained Optimization

Consider the problem
(P) \quad Min $z=f(\mathbf{x})$

$$
\text { s.t. } g_{i}(\mathbf{x}) \geq 0 \quad i=1,2, \ldots, m
$$

The Lagrangian function of the problem is defined as:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})
$$

In which λ_{i} 's $(i=1,2, \ldots, m)$ are Lagrange multipliers.

M司 Optimality Conditions for Constrained Optimization The Karush-Kuhn-Tucker (KKT) Necessary Condition

If \mathbf{x}^{*} is a local minimum of (\mathbf{P}), then there should exist λ^{*} such that \mathbf{x}^{*} and λ^{*} are the solutions of:

$$
\begin{array}{ll}
\lambda_{i}^{*} \geq 0 & i=1,2, \ldots, m \\
\nabla f\left(\mathbf{x}^{*}\right)-\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0} \\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0 & i=1,2, \ldots, m \\
g_{i}(\mathbf{x}) \geq 0 & i=1,2, \ldots, m
\end{array}
$$

M可E Optimality Conditions for Constrained Optimization The Karush-Kuhn-Tucker (KKT) Necessary Condition

Notes:

- If the constraint is $g_{i}(\mathbf{x}) \geq 0$ then the condition of λ_{i}^{*} is: $\lambda_{i}^{*} \leq 0$
- If the constraint is $g_{i}(\mathbf{x}) \geq 0$ then λ_{i}^{*} is unrestricted in sign

The KKT condition is also sufficient if program (\mathbf{P}) is a convex program, i.e., if $\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ satisfies the KKT conditions then \mathbf{x}^{*} is a global minimum for (\mathbf{P})

Optimality Conditions for Constrained Optimization

Convex Program

Consider the program:
(P) $\quad \operatorname{Min} \quad z=f(\mathbf{x})$

$$
\begin{array}{lll}
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0 & i=1,2, \ldots, r \\
& g_{i}(\mathbf{x}) \geq 0 & i=r+1, \ldots, p \\
& g_{i}(\mathbf{x})=0 & i=p+1, \ldots, m
\end{array}
$$

The above program is a convex program if

- $f(\mathbf{x})$ is a convex function
- $g_{i}(\mathbf{x})(i=1,2, \ldots, r)$ are convex functions
- $g_{i}(\mathbf{x})(i=r+1, \ldots, p)$ are concave functions
- $g_{i}(\mathbf{x})(i=p+1, \ldots, m)$ are linear functions

Optimality Conditions for Constrained Optimization

Example: Consider the problem
(P) $\quad \operatorname{Min} \quad f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$

$$
\begin{array}{ll}
\text { s.t. } & g_{1}(\mathbf{x})=2 x_{1}+x_{2}-5 \leq 0 \\
& g_{2}(\mathbf{x})=x_{1}+x_{3}-2 \leq 0 \\
g_{3}(\mathbf{x})=-x_{1}+1 & \leq 0 \\
g_{4}(\mathbf{x})=-x_{2}+2 & \leq 0 \\
g_{5}(\mathbf{x})=-x_{3} & \leq 0
\end{array}
$$

The above program is a convex program.

Optimality Conditions for Constrained Optimization

The KKT conditions are given as:

$$
\left.\begin{array}{cll}
\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \leq 0 & {\left[\begin{array}{lll}
2 x_{1} & 2 x_{2} & 2 x_{3}
\end{array}\right]-\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array} \lambda_{5}\right.}
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]=\mathbf{0}
$$

The solution (global minimum) is: $x_{1}=1, x_{2}=2, x_{3}=0\left(\lambda_{1}=\lambda_{2}=\lambda_{5}=0, \lambda_{3}=-2, \lambda_{4}=\right.$ -4)

