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MEEl U Optimality Conditions for Unconstrained Optimization

Consider an unconstrained minimization problem:

min f(x)

XERM

Then,

1. x*is alocal minimum, if there exists £ > 0 such that

f(x) = f(x*) forany x € N.(x*) = {x € R"

JZ G- %) < }

l.e., x™ Is the best among its neighborhood.
2. X" isastrict local minimum if f(x) > f(x*) Vx # x* in the neighborhood of x*

3. Vf(x) and V?f(x) are called the first order and the second order conditions
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MEEl U Optimality Conditions for Unconstrained Optimization

Theoretical Review

Definition 1.
A square matrix A is said to be positive definite (or negative definite) if the

quadratic form x"Ax = 2i2jaijxix; >0 (or <O0)forall x+0e€R".

Definition 2:
A square matrix A is said to be positive semidefinite (or negative semidefinite) if

the quadratic form x"Ax = ;¥ a;;x;x; > 0 (or < 0 ) for all x # 0 € R™.

Definition 3:
A € R Is an eigen value of a square matrix A if 3x + 0 € R™ such that Ax = Ax
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MEEl U Optimality Conditions for Unconstrained Optimization

Properties:

1. Ais an eigen value of a square matrix A if and only if A is a root of
the following characteristic function of A: @ (x) = det(A — xI),
which is a polynomial of degree n.

2. A square matrix A Is positive (negative) definite if all its eigen
values are positive (negative).

3. Asquare matrix A Is positive (negative) semidefinite if all its eigen
values are nonnegative (nonpositive).
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MEEl U Optimality Conditions for Unconstrained Optimization

4. Consider sguare matrix 'a, a, - a, |
A=| 2 77 "
_anl a‘n2 ann_
Define:
Ay Ay
ay; Ay By By
Alz‘all‘ A, = A=, : . ;
a21 a22
anl anZ ann
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S[E U Optimality Conditions for Unconstrained Optimization

* The matrix A will be positive definite if and only if all the values
A, A,, ..., A, are positive

 The matrix A will be negative definite if and only If the sign of 4;
is (—=1)/ forj=1,2,..,n

* If some of the A; are positive and the remaining are zero, the
matrix A will be positive semidefinite
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MEEl U Optimality Conditions for Unconstrained Optimization

Theorem: Second Order Necessary Conditions for Optimality

If x* is a local minimum, then Vf(x*) = 0, and V#f(x*) is positive
semidefinite.

VT = {5
fx)

i,j =1,2, n} IS called the Hessian matrix of
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U Optimality Conditions for Unconstrained Optimization

o

roof:
We have: f(x* + dx) — f(x*) = 0.
1. By using Taylor’s series expansion:

T

f(X +dx)=f(x")+Vf(x)
= £ (x")+ Vf (x )de

= f (X" +dx)— f (x')=Vf (x )de+o()

dx+ sz(x*)dx+...

= Vf (x) dx+0(.)20 (*)

Note that dx might be positive (> 0 ) or negative (< 0 ). Hence, (*) holds true if and only if
Vf(x*)Tdx = 0 or equivalently, Vf(x*) = 0.
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MEEl U Optimality Conditions for Unconstrained Optimization

2. We also have:

T

f (x* +dx)— f (x*) = Vf (x*) dx+l|(dx)T Ve f (x*)dx+...

E(dx)T Ve f (x*)dx+0(.)

Hence, (dx)TVZf(x*)dx = 0 = V?f(x*) is positive semidefinite.
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E U Optimality Conditions for Unconstrained Optimization

Note:

“Vf(x*) =0 and V?f(x*) is positive semidefinite” does not
necessarily imply that x* is a local minimum. For example,
consider f(x) = x3 and x* = 0. It can be checked that x* is not
a local minimum although f'(x*) = 3x** = 0 and f""(x*) = 6x* =
0 Is positive semidefinite.
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MEEl U Optimality Conditions for Unconstrained Optimization

Theorem: Second Order Sufficient Conditions for Optimality

If satisfies Vf(x*) = 0 and V?f(x*)is positive definite, then x* is a
strict local minimum.

Proof:

fx* +dx) — f(x*) = VF(x)T +— (dx)TV2f (x")dx + 0(.)

Due to V4f(x*) is positive definite: (dx)TVZf(x*)dx > 0
Hence, f(x* + dx) — f(x*) > 0. This means that x* is a strict local

minimum.
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MEEl U Optimality Conditions for Unconstrained Optimization

Note:

“x* Is a strict local minimum” does not imply that “Vf(x*) = 0 and
VZf(x*) is positive definite”. For example, consider f(x) = x{ +
x5 and x* = 0. It is easily to prove that x* = 0 is a strict local
minimum (actually, a strict global minimum). However,

o) = [+ 1= [

k
| 2X,

3
20wy — [12x7 0l _ [0 O7. iti inite!
But V<f(x*) [ ) ) [0 5 IS not positive definite!
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Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

MEEl U
o

Definition 4: f(.) is convex over convex set S ifforany x,y € S

fAx+ (A -Dy) <AfxX)+ (1 -21f(y) VA€ (0,1)

Theorem: f(.) is convex over convex set S if and only if

fy)=fy)+ Vv '(y—x) VX,yES
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Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

1l

Proof:

1. Assume that f(.) is convex over S. We have
fF(A=Dx+2y) <A -Df® +Af ()
= f(x+Ay-%)-f® <A(f@) - fX)

> VAET(y - x) = lim [EHO0TO < £y £

(Note that: lim oI — v (x)"d )

Hence, foy)=f(y) +Vfx)"'(y —x)
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Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

1l

2. Assume that f(y) = f(y) + V/(X)T(y —x) VX, y€ES

Letz = Ax + (1 — A)y. By the assumption, we have

fxX) = f(2)+Vf(2)' (x—2)and f(y) = f(2) + Vf ()" (y — 2)

Multiply the two inequalities by 4 and (1 — 1), respectively, and summing them up,
we have

ME+A-Df@) = f(@+Vf(2)'[Ax-2) +(1-)(y—2)]
or M)+ A=Df(y) = f(2) = fAx+ (1= 2y)

Hence, f(.) is convex.
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Optimality Conditions for Unconstrained Optimization
Convex Function and Global Optimality

MEEl U
o

Theorem: Global Optimality for Convex Function

For a convex function f(x), if x* satisfies Vf(x*) = 0, then x* is a global minimum.
Conversely, if x* is a global minimum, then Vf(x*) = 0.

Proof:

Consider vx € S (S : convex set), assume that f(.) is a differentiable convex
function, we have

fO = f(x) = fx)+ VD (x—x7)

If VF(x*) =0 then f(x) — f(x*) = 0, i.e., x" is a global minimum
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I\jE_E/'I[] Optimality Conditions for Constrained Optimization

Consider the problem

(P) Min z=f(x)
S.1. gi(X) >0 (1=12,....m

The Lagrangian function of the problem is defined as:

L(x,A) = f(x) — 2 2;9;(X)
i=1

In which A;’s (i = 1,2, ..., m) are Lagrange multipliers.
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Optimality Conditions for Constrained Optimization
The Karush-Kuhn-Tucker (KKT) Necessary Condition

MEEl U
o

If x* Is a local minimum of (P), then there should exist A* such
that x* and A* are the solutions of:

A =0 i=12 .., m
Vi(x*) — X2 4Vgi(x*) =0

Lgi(x)=0 i=12,..,m
gi(x) =0 i=12,..,m
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Optimality Conditions for Constrained Optimization
The Karush-Kuhn-Tucker (KKT) Necessary Condition

MEEl U
o

Notes:

» If the constraint is g;(x) = 0 then the condition of A} is: 1; < 0
* If the constraint is g;(x) = 0 then 4; is unrestricted in sign

The KKT condition is also sufficient if program (P) is a convex
program, i.e., If (x*, A*) satisfies the KKT conditions then x* is a
global minimum for (P)
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I\jE_E/I[] Optimality Conditions for Constrained Optimization

Convex Program

Consider the program:
(P) Min z=fx)
st.  g;(x)<0 i=12,..,71
gix) =0 i=r+1,..,p
gix) =0 i=p+1,...m
The above program is a convex program if

« f(x) is a convex function

« 9;(x) (i =1,2,...,r) are convex functions

« g;(x) (i=r+1,...,p) are concave functions
« g;(x) (i=p+1,..,m) are linear functions
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I\jE_E/'I[] Optimality Conditions for Constrained Optimization

Example: Consider the problem

(P) Min f(x)=xf+ x5+ x%
st. g x)=2x;+x,—5<0
g (X)=x;+x3—2 <0
gz3(x) = —x; +1 <0
gis(X) = —x, + 2 <0
gs(X) = —x3 <0

The above program is a convex program.
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I\jE_E/'I[] Optimality Conditions for Constrained Optimization

The KKT conditions are given as:

A Ay A Ay A5 <0

The solution (global minimum)is: x; = 1,x, =2, x3 =04, =4, =15 =0,A3 = =2, 1, =
— 4_)

[2x, 2x
2% + X, <5
X, +X; <2
_0 X%2Lx,22%20
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