
Curriculum Development

of Master’s Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry

Advanced Optimization:
Techniques and Industrial Applications

Curriculum Development

of Master’s Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry

Session 1.3:
Integer/Mixed Integer Programming &

Combinatorial Optimization

Introduction

Consider the standard LP:

Minimize σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

s.t. σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 ≥ 0 ∀𝑖 = 1,2,… ,𝑚

𝑥𝑗 ≥ 0 ∀𝑗 = 1,2,… , 𝑛

• If all variables are integers: Pure Integer Program (IP or ILP)

• If some variables are integers: Mixed Integer Program (MIP)

• If all variables are either 0 or 1: Zero-One Integer Program

Introduction

Example 1: 0-1 Knapsack Problem

Consider n items to be carried. Item j (𝑗 = 1,2, . . , 𝑛) has a value 𝑐𝑗 and a weight
𝑎𝑗. The limited weight that can be carried is K. The problem is to select the items
so as to maximize the total value.

Decision variable: 𝑥𝑗 = ቊ
1 if item 𝑗 is chosen
0 otherwise

The IP model: Maximize σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

s.t. σ𝑗=1
𝑛 𝑎𝑗𝑥𝑗 ≤ 𝐾

𝑥𝑗 = 0 or 1 ∀𝑗

Introduction

Example 2: Either-Or Problem

Consider an IP in which one and only one of the following two constraints holds

σ𝑗 𝑎1𝑗𝑥𝑗 ≤ 𝑏1 or σ𝑗 𝑎2𝑗𝑥𝑗 ≤ 𝑏2

This type of constraint can be reformulated by introducing a 0-1 variable y and

sufficiently large number M such that:
σ𝑗 𝑎1𝑗𝑥𝑗 − 𝑏1 ≤ 𝑀𝑦 (1)

σ𝑗 𝑎2𝑗𝑥𝑗 − 𝑏2 ≤ 𝑀 1 − 𝑦 (2)

Note that:

• If 𝑦 = 0 : (2) becomes redundant

• If 𝑦 = 1 : (1) becomes redundant

Introduction

In general, if we have 𝑚 constraints 𝑔𝑖 𝑥 ≤ 0 (𝑖 = 1,2,… ,𝑚)
and we want 𝑘 constraints out of 𝑚 to hold (𝑘 < 𝑚) then we can
introduce 𝑚 0-1 variables 𝑦1 , 𝑦2 , …, 𝑦𝑚 and a very large
numbers 𝑀 such that:

𝑔𝑖 𝑥 ≤ 𝑀𝑦𝑖 (𝑖 = 1,2,… ,𝑚)

𝑦1 + 𝑦2+. . +𝑦𝑚 = 𝑚 − 𝑘

𝑦𝑖 = 0 or 1 (𝑖 = 1,2,… ,𝑚)

Introduction

Example 3: Sequencing Problem

Consider the problem in which the optimal processing sequence
of 𝑛 jobs on a machine is determined. Assume that the machine
can only process one job at a time.

Denote 𝑝𝑖 : processing time of job 𝑖

𝑡𝑖 : start time of job 𝑖

For a pair of jobs (𝑖, 𝑗) there are only two options:

1. Job 𝑖 starts before job 𝑗 or: 𝑡𝑗 ≥ 𝑡𝑖 + 𝑝𝑖
2. Job 𝑗 starts before job 𝑖 or: 𝑡𝑖 ≥ 𝑡𝑗 + 𝑝𝑗

Introduction

Introduce a very large number 𝑀 and 0-1 variables 𝑦𝑖𝑗 in which
𝑦𝑖𝑗 = 1 if job 𝑖 is processed before job 𝑗, 𝑦𝑖𝑗 = 0 otherwise. The
above options can be described as follows:

𝑀𝑦𝑖𝑗 + 𝑡𝑖 − 𝑡𝑗 ≥ 𝑝𝑗

𝑀 1 − 𝑦𝑖𝑗 + 𝑡𝑗 − 𝑡𝑖 ≥ 𝑝𝑖

𝑦𝑖𝑗 = 0 or 1

Introduction

Example 4: Warehouse Location Problem

Consider the decision to open a number of warehouses at potential sites. Denote:

𝑦𝑖 : 0-1 variable; =1 if a warehouse is opened at site i, =0 otherwise

𝑓𝑖 : fixed operation cost of the warehouse at site i, if opened

𝑥𝑖𝑗 : amount of goods to be shipped from warehouse at site i, if

opened, to customer j,

𝑐𝑖𝑗 : operation & transportation cost per unit from warehouse at

site i to customer j

𝑑𝑗 : demand of customer j

𝑠𝑖 : supply capacity of warehouse at site i, if opened

Introduction

The problem can be formulated as a mixed IP:

Min Cost = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗 +σ𝑖=1
𝑚 𝑓𝑖𝑦𝑖

s.t. σ𝑗=1
𝑛 𝑥𝑖𝑗 ≤ 𝑠𝑖𝑦𝑖 ∀𝑖

σ𝑖=1
𝑚 𝑥𝑖𝑗 ≥ 𝑑𝑗 ∀𝑗

𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗

Introduction

Example 5: Traveling Salesman Problem

A traveling salesman has to visit each of n sites 𝐶1, 𝐶2,…, 𝐶𝑛. He
must start from his office located at site 𝐶1 and return to 𝐶1 after
visit each site exactly once. The distance between 𝐶𝑖 and 𝐶𝑗 is
𝑐𝑖𝑗. The problem is to find the route which minimizes the total
distance traveled.

Denote 𝑥𝑖𝑗 = ቊ
1 if the route includes the arc 𝐶𝑖, 𝐶𝑗
0 otherwise

Introduction

The problem can be formulated as a mixed IP as follows:

Min Cost = σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗
s.t. σ𝑗=1

𝑛 𝑥𝑖𝑗 = 1 ∀𝑖

σ𝑖=1
𝑛 𝑥𝑖𝑗 = 1 ∀𝑗

𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗

𝑢𝑖- 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1 𝑖, 𝑗 = 2,3, . . , 𝑛; 𝑖 ≠ 𝑗(*)

𝑥𝑖𝑗 = 0 or 1 ∀𝑖, 𝑗

𝑢𝑖 ≥ 0 and integer ∀𝑖 = 2,3, . . , 𝑛
The role of (*): To eliminate solutions that contain a subtour
(disconnected route)

Introduction

• In fact, if a “solution” contains a subtour, it will be infeasible.

Consider a subtour 𝐶𝑖1 , 𝐶𝑖2,…, 𝐶𝑖𝑘, 𝐶𝑖𝑘+1 ≡ 𝐶𝑖1 (𝑘 < 𝑛, 𝑖𝑘 ≠ 1). Note that 𝑥𝑖𝑗,𝑖𝑗+1 =

1 (𝑗 = 1,2,… , 𝑘), we have:

𝑢𝑖1-𝑢𝑖2 + 𝑛 ≤ 𝑛 − 1

𝑢𝑖2-𝑢𝑖3 + 𝑛 ≤ 𝑛 − 1

…

𝑢𝑖𝑘-𝑢𝑖1 + 𝑛 ≤ 𝑛 − 1

⇒ 𝑘𝑛 ≤ 𝑘 𝑛 − 1 : impossible!

• For any feasible solution, there exist values of the 𝑢𝑖
′𝑠 that satisfy (*)

In fact, let 𝑢𝑖 = the location of 𝐶𝑖 in the tour then (*) will be satisfied.

Solution Approach

It should be noted that the solution of an IP model could not be simply

achieved by solving the LP relaxation problem and then rounding off its

solution.

Example 6: Consider the IP model

Max 𝑧 = 5𝑥1 + 8𝑥2
s.t. 5𝑥1 + 3𝑥2 ≤ 30

5𝑥1 + 9𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0 and integer

Solution of the LP relaxation: 𝑥1 = 4.5, 𝑥2 = 2.5
Solution of the IP: 𝑥1 = 0, 𝑥2 = 5

Solution Approach
CUTTING PLANE ALGORITHM

Applied for “Pure Integer Programs”

Consider the optimal simplex tableau

of the LP relaxation of a pure IP model:

 Z
jx RHS

Z 1
ojy 00y

Bx

0

0

0

1 j

ij

mj

y

y

y

10

0

0

i

m

y

y

y

jxojy00yBx0

0

0

1 j

ij

mj

y

y

y

10

0

0

i

m

y

y

y

Solution Approach
CUTTING PLANE ALGORITHM

From the above simplex tableau, we have:

σ𝑗=1
𝑛 𝑦𝑖𝑗𝑥𝑗 = 𝑦𝑖0 ∀𝑖 (*)

Denote 𝑘 to be the integer part of 𝑘, i.e., 𝑘 = 𝑘 + 𝑓 (0 ≤ 𝑓 < 1)

Then for a non-integer value 𝑦𝑖0, we have: σ𝑗=1
𝑛 𝑦𝑖𝑗 𝑥𝑗 ≤ 𝑦𝑖0

Since 𝑥𝑗 is integer, we can rewrite the above inequality as:

σ𝑗=1
𝑛 𝑦𝑖𝑗 𝑥𝑗 ≤ 𝑦𝑖0 (**)

Solution Approach
CUTTING PLANE ALGORITHM

From (*) and (**), we can derive:

σ𝑗=1
𝑛 𝑦𝑖𝑗 − 𝑦𝑖𝑗 𝑥𝑗 ≤ 𝑦𝑖0 − 𝑦𝑖0

Note that 𝑦𝑖𝑗 = 0 or 1 for all 𝑗 ∈ 𝐁 ⇒ 𝑦𝑖0 − 𝑦𝑖0 for all 𝑗 ∈ 𝐁. Hence,
the above inequality is equivalent to

This inequality is called a Gomory cut.

𝑗∈𝑫

𝑦𝑖𝑗 − 𝑦𝑖𝑗 𝑥𝑗 ≤ 𝑦𝑖0 − 𝑦𝑖0

Solution Approach
CUTTING PLANE ALGORITHM

It is noted that:

1. The noninteger optimal solution for the LP relaxation problem do

not satisfy the Gomory constraint due to

• LHS = 0 because of 𝑥𝑗 = 0 ∀𝑗 ∈ 𝑫 while

• RHS <0 because 𝑦𝑖0 is not an integer.

2. All integer feasible solutions for the LP relaxation problem will

satisfy this constraint.

Solution Approach
CUTTING PLANE ALGORITHM

Procedure of Cutting Plane Method

Step 1: Solve the LP relaxation problem

If the optimal solution is integer, stop. The optimal solution of

the original IP has been found. Otherwise, go to step 2.

Step 2: Select the constraint in the final simplex tableau with the

largest value of 𝑦𝑖0 − 𝑦𝑖0 . Add the associated Gomory cut in

the set of constraints and go back to step 1.

Solution Approach
CUTTING PLANE ALGORITHM

Example 7: Consider the IP program:

Max 𝑧 = −5𝑥1 − 6𝑥2
s.t. 10𝑥1 + 3𝑥2 ≤52

2𝑥1 + 3𝑥2 ≤18

𝑥1, 𝑥2 ≥ 0 and integer

Solution Approach
CUTTING PLANE ALGORITHM

Optimal simplex tableau of the LP relaxation problem:

 Z
1x 2x 3x 4x RHS

Z 1 0 0 -1/8 -15/8 -161/4

1x 0 1 0 1/8 -1/8 17/4

2x 0 0 1 -1/12 5/12 19/6

Solution Approach
CUTTING PLANE ALGORITHM

Both 𝑥1 and 𝑥2 are not integers. Introduce a cutting plane
associated with the basic variable having largest fraction, i.e.,
𝑥1:

1

8
−

1

8
𝑥3 + −

1

8
− −

1

8
𝑥4 ≤

17

4
−

17

4

⇔ −
1

8
𝑥3 −

7

8
𝑥4 ≤ −

1

4

Solution Approach
CUTTING PLANE ALGORITHM

The updated simplex tableau:

 Z
1x 2x 3x 4x 5x RHS

Z 1 0 0 -1/8 -15/8 0 -161/4

1x 0 1 0 1/8 -1/8 0 17/4

2x 0 0 1 -1/12 5/12 0 19/6

5x 0 0 0 -1/8* -7/8 1 -1/4

Solution Approach
CUTTING PLANE ALGORITHM

Applying the dual simplex method we obtain:

 Z
1x 2x 3x 4x 5x RHS

Z 1 0 0 0 -1 -1 -40

1x 0 1 0 0 -1 1 4

2x 0 0 1 0 1 -2/3 10/3

3x 0 0 0 1 7 -8 2

Solution Approach
CUTTING PLANE ALGORITHM

Since 𝑥2 is still not an integer, introduce another Gomory cut
associated with 𝑥2:

1 − 1 𝑥4 + −
2

3
− −

2

3
𝑥5 ≤

10

3
−

10

3

⇔ −
1

3
𝑥5 ≤ −

1

3

Solution Approach
CUTTING PLANE ALGORITHM

The updated simplex tableau:

 Z
1x 2x 3x 4x 5x 6x RHS

Z 1 0 0 0 -1 -1 0 -40

1x 0 1 0 0 -1 1 0 4

2x 0 0 1 0 1 -2/3 0 10/3

3x 0 0 0 1 7 -8 0 2

6x 0 0 0 0 0 -1/3 1 -1/3

Solution Approach
CUTTING PLANE ALGORITHM

Applying the dual simplex method we obtain:

Optimal solution: 𝑥1
∗ = 3, 𝑥2

∗ =4; value of objective function: 𝑧∗ = −39.

 Z
1x 2x 3x 4x 5x 6x RHS

Z 1 0 0 0 -1 0 -3 -39

1x 0 1 0 0 -1 0 3 3

2x 0 0 1 0 1 0 -2 4

3x 0 0 0 1 7 0 -24 10

5x 0 0 0 0 0 1 -3 1

Solution Approach
CUTTING PLANE ALGORITHM

Notes:

• From the original constraints and the first Gomory cut, we have:

𝑥3 = 52 − 10𝑥1 + 3𝑥2 ; 𝑥4 = 18 − 2𝑥1 + 3𝑥2

𝑥5 = −
1

4
+
𝑥3 + 𝑥4

8
= 22 − 3 𝑥1 + 𝑥2

Hence, the first and the second cutting planes are equivalent to:

𝑥1 + 𝑥2 ≤ Τ22
3

𝑥1 + 𝑥2 ≤7

The cutting planes are parallel.

• The cutting plane algorithm will converge after a finite number of iterations

Solution Approach
CUTTING PLANE ALGORITHM

Theorem: If LP relaxation problem is unbounded, the IP problem is either
unbounded or infeasible
Proof: If the LP relaxation problem is unbounded, then

∃𝑗: 𝑦0𝑗 > 0 𝑎𝑛𝑑 𝑦𝑖𝑗 ≤ 0 ∀𝑖 = 1,2,… ,𝑚

Consider a direction 𝐝 > 𝟎 defined by ൞

𝑑𝑩𝑖 = −𝑦𝑖𝑗 > 0 𝑖 = 1,2,… ,𝑚

𝑑𝑗 = 1

𝑑𝑘 = 0 𝑘 ≠ 𝑖, 𝑗
We have:

𝐜𝑇𝐝 = σ𝑖=1
𝑚 𝑐𝑥𝑩𝑖

−𝑦𝑖𝑗 + 𝑐𝑗 = −𝐜𝐁
𝑇𝐁−1𝐀𝑗 + 𝑐𝑗 = −𝑦𝑜𝑗 < 0

𝐀𝐝 = 𝐀𝑗 − σ𝑖=1
𝑚 𝑦𝑖𝑗𝐀𝑩𝑖 = 𝟎

Solution Approach
CUTTING PLANE ALGORITHM

It is noted that we can define an infinite series 𝜆𝑖 , 𝜆𝑖 <
𝜆𝑖+1 such that 𝜆𝑖𝐝 is integer for ∀𝑖. Therefore, if the IP program

is feasible, i.e., there exists an integer feasible solution ഥ𝐱 (𝐀ഥ𝐱 =
𝐛 and integer) then ത𝐱 + 𝜆𝑖𝐝 is also an integer feasible solution

for all 𝑖 and:

𝐜𝑇 ത𝐱 + 𝜆𝑖𝐝 = 𝐜𝑇 ത𝐱 + 𝜆𝑖𝐜
𝑇𝐝 = 𝐜𝑇 ത𝐱 − 𝜆𝑖𝑦0𝑗 < 𝐜𝑇 ത𝐱

Therefore, the IP is also unbounded.

Solution Approach
BRANCH AND BOUND ALGORITHM

The branch and bound algorithm can be applied for both pure IP
and mixed IP programs. However, in many practical
applications, the algorithm is developed based on the specific
structure of the IP problem under consideration

Solution Approach
BRANCH AND BOUND ALGORITHM

In general, the branch and bound procedure using LP relaxation method for a minimization

problem is as follows:

1. Branching

Divide the feasible region into a finite number of subregions

2. Bounding

Develop bounds for the optimal objective value 𝑧∗ at each subdivided subregion:

𝑧 ≤ 𝑧∗ ≤ 𝑧. The upper bound 𝑧 is the smallest objective value of any feasible integer

solution encountered and the lower bound 𝑧 is the smallest objective value at any active

(or unfathomed) subregion.

Solution Approach
BRANCH AND BOUND ALGORITHM

3. Fathoming

The subregion 𝐿𝑗 is fathomed if

a. LP relaxation over 𝐿𝑗 is infeasible (infeasibility)

b. The optimal LP relaxation over 𝐿𝑗 is integer (integrality)

c. The optimal LP relaxation solution over 𝐿𝑗 is greater
than or equal to 𝑧 (dominance)

Solution Approach
BRANCH AND BOUND ALGORITHM

Remark:

In case of maximization problem:

• The upper bound 𝑧 is the largest objective value at any active (or
unfathomed) subregion

• The lower bound 𝑧 is the largest feasible integer solution
encountered.

• Fathoming criteria 3c. is: The optimal LP relaxation solution over 𝐿𝑗
is less than or equal to 𝑧 (dominance)

Solution Approach
BRANCH AND BOUND ALGORITHM

Branching procedure:

1. Depth-first search or LIFO

If the current node is not fathomed, the next node considered is one
of its two sons. We can:

• Arbitrarily select the left son or the right son
• Select the son that has the smaller lower bound (for minimization

problem) or the larger upper bound (for maximization problem)

When a node is fathomed, go back toward the root until we find the
first node that has a son that has not yet been considered

Solution Approach
BRANCH AND BOUND ALGORITHM

2. Breadth-first search

All the nodes at a given level are considered before any nodes at the
next lower level. Note that the level of a node in the enumeration tree
is the number of arcs in the unique path between it and the root.

3. Best lower bound

When a node has been fathomed, select the next node from all active
nodes that has the smallest lower bound (for minimization problem)
or the largest upper bound (for minimization problem)

Solution Approach
BRANCH AND BOUND ALGORITHM

Example 8: Consider the problem

(IP0) Min 𝑧 = −5𝑥1 − 4𝑥2
s.t. 𝑥1+ 𝑥2≤ 5

10𝑥1 + 6𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0 and integer

Solution of the LP relaxation problem (LP0):

𝑥1 = 3.75, 𝑥2 = 1.25 and 𝑧 = −23.75

Solution Approach
BRANCH AND BOUND ALGORITHM

Branching variable: 𝑥1 ⇒ The feasible region is divided into two
subregions

1. Subregion 1: defined by original constraints and 𝑥1 ≤ 3

2. Subregion 2: defined by original constraints and 𝑥1 ≥4

If the integer requirement of variables is taken into
consideration, the problem (LP0) is equivalent to the two
subproblems (LP1) and (LP2) associated with the two
subregions defined above.

Solution Approach
BRANCH AND BOUND ALGORITHM

Consider

(LP1) : Min 𝑧 = −5𝑥1 − 4𝑥2
s.t. 𝑥1+ 𝑥2≤ 5

10𝑥1 + 6𝑥2 ≤ 45
𝑥1 ≤ 3

𝑥1, 𝑥2 ≥ 0

Solution of (LP1): 𝑥1 = 3, 𝑥2 =2 and 𝑧 = −23
(LP1) is fathomed due to integrality and 𝑧 = −23, i.e., 𝑧∗ ≤ −23

Solution Approach
BRANCH AND BOUND ALGORITHM

The next step should be to consider (LP2). However, due to the
fact that all coefficients of the objective function are integers and
that the optimal objective value of (LP0) is -23.75, there exists
no subproblem of (LP0) that can give a better solution than -23.
Therefore, there is no need to consider (LP2).

Solution of (LP1) is then the optimal solution of the original (IP0)
problem

Solution Approach
BRANCH AND BOUND ALGORITHM

x1=3.75; x2=1.25

Z=-23.75

x1=4; x2=0.8333

Z=-23.3333

x1=3; x2=2

Z=-23

Fathomed:
Infeasibility

x1=4.5; x2=0

Z=-22.5

Fathomed:
Infeasibility

x1=4; x2=0

Z=-20

LP0

LP2 LP1

LP3LP4

LP5LP6

1 4x 1 3x

2 1x 2 0x

1 5x 1 4x

(Upper bound = -20)

Fathomed: Optimality

1

2 7

3 4

5 6

If (LP2) is examined before (LP1):
using depth-first search technique,
the solution can be determined as
follows:

Instead of using 𝑥1 as branching
variable, we can use 𝑥2 (the student
is recommended to examine this
case).

Note: There is no general guidance for the
selection of branching variable

Solution Approach
BRANCH AND BOUND ALGORITHM

Example 9: Consider the problem

(IP0) Min 𝑧 = −5𝑥1 − 8𝑥2
s.t. 𝑥1+ 𝑥2≤ 6

5𝑥1 + 9𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0 and integer

Applying the breadth-first search technique, the upper & lower
bounds of each subproblem and the final solution of the problem
can be illustrated in the following picture

Solution Approach
BRANCH AND BOUND ALGORITHM

x1=2.25; x2=3.75

Z=-41.25

x1=1.8; x2=4

Z=-41

x1=3; x2=3

Z=-39

Fathomed:

Infeasibility

x1=1; x2=4.44

Z=-40.55

x1=1; x2=4

Z=-37

x1=0; x2=5

Z=-40: Optimal!

LP0

LP1 LP2

LP4LP3

LP6LP5

2 4x 2 3x

1 2x 1 1x

2 4x 2 5x

Fathomed: Integrality

1

2 3

4 5

6 7

41

z

z

=

= −

41

z

z

=

= −

39

41

z

z

= −

= −

39

40

z

z

= −

= −

Fathomed: Dominance

40

40

z

z

= −

= −

Fathomed: Integrality

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

LP Relaxation Technique: (for minimization problem)

The B&B algorithm applied for 0-1 integer program is performed
as follows:

• Assign the current best objective value 𝑧∗ = ∞. Solve the LP
relaxation problem (LP0) associated with the original (IP0)
problem. If (LP0) is not fathomed then start the iterative
process

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

• In each iteration, perform the following steps

Branching:

Among unfathomed subproblems, select the most recently emerging
subproblem (depth-first search). Breaking the tie by selecting the
subproblem with smaller lower bound. Branching by use of some 0-1
variable of the selected subproblem.

Defining the lower bound:

For each subproblem, solve the associated LP relaxation problem in order
to determine the lower bound and update the current best objective value
𝑧∗ (if obtain integer solution from LP relaxation problem)

Checking fathoming condition:

Use fathoming criteria to check if the investigated subproblem is fathomed.

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

The above procedure is performed until all subproblems are
fathomed. The current best objective value is the optimal

objective value.

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

Fathoming criteria:

1. Solution of LP relaxation problem of the subproblem is
integer

2. Lower bound of the subproblem is greater than 𝑧∗

3. LP relaxation problem is infeasible.

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

Example 10: Consider

(IP0) Min 𝑧 = −9𝑥1 − 5𝑥2 − 6𝑥3 −4𝑥4
s.t. 6𝑥1 + 3𝑥2 + 5𝑥3 +2𝑥4 ≤ 10

𝑥3 + 𝑥4 ≤ 1

−𝑥1 +𝑥3 ≤ 0
−𝑥2 +𝑥4 ≤ 0

𝑥𝑗 = 0,1 ∀𝑗 = 1,2,3,4

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

LP relaxation problem:

(LP0) Min 𝑧 = −9𝑥1 − 5𝑥2 − 6𝑥3 −4𝑥4
s.t. 6𝑥1 + 3𝑥2 + 5𝑥3 +2𝑥4 ≤ 10

𝑥3 + 𝑥4 ≤ 1

−𝑥1 +𝑥3 ≤ 0
−𝑥2 +𝑥4 ≤ 0

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗 = 1,2,3,4

Solution of (LP0): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (
5

6
, 1,0,1); 𝑧 = −16

1

2

Lower bound of (IP0): 𝑧𝐼𝑃0 = −16

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

• Iteration 1: Branching variable 𝑥1. The two subproblems:

(IP1): Min 2 3 45 6 4Z x x x= − − −

 s.t.

2 3 4

3 4

3

2 4

3 5 2 10

1

0

0

0,1 2,3,4j

x x x

x x

x

x x

x j

+ +

+

− +

= =

(IP2): Min 2 3 49 5 6 4Z x x x= − − − −

 s.t.

2 3 4

3 4

3

2 4

3 5 2 4

1

1

0

0,1 2,3,4j

x x x

x x

x

x x

x j

+ +

+

− +

= =

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

Solution of (LP1): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (0,1,0,1); 𝑧 = −9

Solution of (LP2): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (1,
4

5
, 0,

4

5
); 𝑧 = −16

1

5

Lower bounds: 𝑧𝐼𝑃2 = −16

(LP1) has integer solution ⇒ Update the current best objective value
𝑧∗ = −9.

(IP1) is fathomed due to integrality. Hence, (IP2) will be considered
for branching in the next iteration

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

• Iteration 2: Branching subproblem (IP2) based on 𝑥2

(IP3): Min 3 49 6 4Z x x= − − − (2 0x =)

 s.t.

3 4

3 4

3

4

5 2 4

1

1

0

0,1 3,4j

x x

x x

x

x

x j

+

+

= =

(IP4): Min 3 414 6 4Z x x= − − − (2 1x =)

 s.t.

3 4

3 4

3

4

5 2 1

1

1

1

0,1 3,4j

x x

x x

x

x

x j

+

+

= =

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

Solution of (LP3): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (0,0,
4

5
, 0); 𝑧 = −13

4

5

Solution of (LP4): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (1,1,0,
1

2
); 𝑧 = −16

Lower bounds: 𝑧𝐼𝑃3 = −13 and 𝑧𝐼𝑃4 = −16

(IP4) will be considered for branching in the next iteration
(smaller lower bound).

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

Iteration 3: Branching subproblem (IP4) based on 𝑥3

(IP5): Min 414 4Z x= − − (3 0x =)

 s.t.

4

4

4

2 1

1

0,1

x

x

x

=

(IP6): Min 420 4Z x= − − (3 1x =)

 s.t.

4

4

4

2 4

0

0,1

x

x

x

 −

=

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

Solution of (LP5): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (1,1,0,
1

2
); 𝑧 = −16

Solution of (LP6): Not exist! Infeasible

Lower bound: 𝑧𝐼𝑃5 ≥ −16

(IP6) is fathomed due to infeasibility. Hence, (IP5) will be
considered for branching in the next iteration.

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

• Iteration 4: Branching subproblem (IP5) based on 𝑥4

(IP7) - 𝑥4 = 0 and (IP8) - 𝑥4 = 1 are not mathematical programs

(IP7) ⇒ 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (1,1,0,0); 𝑧 = −14 : integer solution.

(IP8) ⇒ 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (1,1,0,1); infeasible.

Update the current best objective value 𝑧∗ = −14.

With 𝑧∗ = −14, subproblem (IP3) is also fathomed due to 𝑧𝐼𝑃3 ≥ 𝑧∗

Solution of (IP0): 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (1,1,0,0);𝑧∗ = −14

Solution Approach
BRANCH AND BOUND ALGORITHM FOR 0-1 IP

The solution procedure can be summarized in the following
graph:

LP0

16−

0

1

1x

*9 Z− =

16−

0

1

FATHOMED
2x

*13 Z−

16−

0

1

16−

Infeasible

0

1

Infeasible

*14 Z− =

OPTIMAL

3x 4x

FATHOMED

FATHOMED

FATHOMED

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Consider the 0-1 IP program:

Min σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

s.t. σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ∀𝑖 = 1,2, … ,𝑚

𝑥𝑗 = 0,1 ∀𝑗 = 1,2, … , 𝑛

Without loss of generality, we can assume that 𝑐𝑗 ≥ 0 (if 𝑐𝑗 < 0 then
define 𝑥𝑗

′ = 1 − 𝑥𝑗 ⇒ 𝑐𝑗𝑥𝑗 = 𝑐𝑗 + 𝑐𝑗
′ 𝑥𝑗

′ with 𝑐𝑗
′ = −𝑐𝑗 ≥ 0)

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Definitions:

• Fixed variable: the variable that has been assigned a value
(either 0 or 1)

• Free variable: the variable that has not been assigned a value.

If the inequality constraints are ignored, the objective function is
minimized by setting all free variables to 0 (since all 𝑐𝑗 ≥ 0).

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

At any node of the branching tree, the i-th constraint is
equivalent to:

σ𝑗∈𝐹𝑅𝐸𝐸 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 −σ𝑗∈𝐹𝐼𝑋𝐸𝐷 𝑎𝑖𝑗𝑥𝑗 = (const)

⇒ σ𝑗∈𝐹𝑅𝐸𝐸 𝑎𝑖𝑗
+𝑥𝑗 ≥ 𝑏𝑖 −σ𝑗∈𝐹𝐼𝑋𝐸𝐷 𝑎𝑖𝑗𝑥𝑗 (*)

where 𝑎𝑖𝑗
+ = 𝑚𝑎𝑥 0, 𝑎𝑖𝑗

Hence, if σ𝑗∈𝐹𝑅𝐸𝐸 𝑎𝑖𝑗
+𝑥𝑗 < 𝑏𝑖 −σ𝑗∈𝐹𝐼𝑋𝐸𝐷 𝑎𝑖𝑗𝑥𝑗, the i-th constraint

will never be satisfied regardless of any value assigned to the
free variables ⇒ The current node is fathomed.

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Fathoming criteria:

1. The infeasibility test is positive, i.e.,

𝑗∈𝐹𝑅𝐸𝐸

𝑎𝑖𝑗
+𝑥𝑗 < 𝑏𝑖 −

𝑗∈𝐹𝐼𝑋𝐸𝐷

𝑎𝑖𝑗𝑥𝑗

1. Feasible integer solution is found

2. The objective value > upper bound 𝑧

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Example 11: Consider

(IP0) Min 𝑧 = 8𝑥1 + 2𝑥2 + 4𝑥3 +7𝑥4 + 5𝑥5
s.t.

3𝑥1 + 3𝑥2 − 𝑥3 −2𝑥4 − 3𝑥5 ≥ 2
5𝑥1 + 3𝑥2 + 2𝑥3 + 𝑥4− 𝑥5 ≥ 4

𝑥𝑗 = 0,1 ∀𝑗 = 1,2,3,4,5

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Solution Diagram:

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Node 0: No fixed variables

If we set all variables equal zero then 𝑧 = 0 but the constraints are not satisfied. Hence, 𝑧 = 0 and

𝑧 = ∞

Node 1: 𝑥1 = 1
Minimum value = 8 by setting 𝑥2 = 𝑥3 = 𝑥4 = 𝑥5 = 0. Both constraints are satisfied ⇒ Node 1 is

fathomed. Update 𝑧 = 8.

Node 2: 𝑥1 =0

Minimum value = 0 by setting 𝑥2 = 𝑥3 = 𝑥4 = 𝑥5 = 0. Both constraints are not satisfied.

Checking (*): 3 ≥ 2 & 6 ≥ 4 - Both constraints satisfy (*) ⇒ Further branching

Node 3: 𝑥1 =0, 𝑥2 = 1
Minimum value = 2 by setting 𝑥3 = 𝑥4 = 𝑥5 = 0. Constraint 2 is not satisfied. Update 𝑧 =2.

Checking (*): 3 ≥1 - Constraint 2 satisfies (*) ⇒ Further branching

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Node 4: 𝑥1 =0, 𝑥2 =0

Minimum value = 0 by setting 𝑥3 = 𝑥4 = 𝑥5 = 0. Both constraints are not satisfied.

Checking (*): 0 ≥ 2 & 3 ≥ 4 - Both constraints do not satisfy (*) ⇒ Node 4 is

fathomed. (In fact, if any constraint does not satisfy (*) then the node is fathomed)

Node 5: 𝑥1 =0, 𝑥2 =1, 𝑥3 = 1
Minimum value = 6 by setting 𝑥4 = 𝑥5 = 0. Both constraints are satisfied ⇒ Node

5 is fathomed. Update 𝑧 = 6.

Node 6: 𝑥1 =0, 𝑥2 =1, 𝑥3 = 0
Minimum value = 2 by setting 𝑥4 = 𝑥5 = 0. Constraint 2 is not satisfied.

Checking (*): 1 ≥ 1 - Constraint 2 satisfies (*) ⇒ Further branching..

Solution Approach
IMPLICIT ENUMERATION METHOD FOR 0-1 IP

Node 7: 𝑥1 =0, 𝑥2 =1, 𝑥3 = 0, 𝑥4 =1

Minimum value = 9 by setting 𝑥5 = 0. Node 7 is fathomed because
𝑧 = 9 > 𝑧 = 6 .

Node 8: 𝑥1 =0, 𝑥2 =1, 𝑥3 = 0, 𝑥4 =1

Minimum value = 2 by setting 𝑥5 = 0. Constraint 2 is not satisfied.

Checking (*): 1 ≥ 1 - Constraint 2 does not satisfy (*) ⇒ Node 8 is
fathomed.

Optimal solution: 𝑥1 =0, 𝑥2 =1, 𝑥3 =1, 𝑥4 =0, 𝑥5 =0 and 𝑧∗ = 6

Combinatorial Optimization

• Combinatorial analysis is the study of the arrangement,
grouping, or selection of discrete objects, usually finite in
number.

• In Operations Research, combinatorial optimization aims at
searching for the best element among a finite set of elements

• Integer programming together with combinatorial optimization
are considered as “discrete optimization”

Combinatorial Optimization

Common problems involving combinatorial optimization:
• Knapsack Problem

• Travelling Salesman Problem

• Assignment Problem

• Transportation Problem

• Vehicle Routing Problem

• Shortage Path Problem

• Maximum Flow Problem

• Minimum Spanning Tree Problem

• Set Covering Problem

• Cutting Stock Problem

• etc

Combinatorial Optimization

• In this section, solution techniques for a few network flow
problems will be discussed. It should be noted that these
techniques are efficient only for problems with small
dimensionality

• Most of the combinatorial problems are difficult to solve. In
many practical applications, metaheuristic algorithms (e.g., GA,
ACO, SA, PSO,…) should be used to help find good solution
for combinatorial optimization problems

Transportation Problem

Find the least-cost transportation plan from a set of supply nodes with supply

capacities 𝑠𝑖 (𝑖 = 1,2,… ,𝑚) to a set of demand nodes with required demand

quantities 𝑑𝑗 (𝑗 = 1,2,… , 𝑛)

Minimize Z = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗
s.t. σ𝑗=1

𝑛 𝑥𝑖𝑗 ≤ 𝑠𝑖 (𝑖 = 1,2,… ,𝑚)

σ𝑖=1
𝑚 𝑥𝑖𝑗 ≥ 𝑑𝑗 (𝑗 = 1,2,… , 𝑛)

𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗

Where: 𝑥𝑖𝑗 - the amount to be transported from supply node i to demand node j

𝑐𝑖𝑗 - unit transportation cost form supply node i to demand node j

Transportation Problem

Feasibility condition:

σ𝑖=1
𝑚 𝑠𝑖 ≥ σ𝑗=1

𝑛 𝑑𝑗

The balanced transportation model:

σ𝑖=1
𝑚 𝑠𝑖 = σ𝑗=1

𝑛 𝑑𝑗

Transportation Problem

• If the demand exceeds the supply, a dummy supply node with
a capacity σ𝑗=1

𝑛 𝑑𝑗 − σ𝑖=1
𝑚 𝑠𝑖 is added to balance the

transportation model. The unit transportation cost from the
dummy supply node to any demand node is zero

• If the supply exceeds the demand, a dummy demand node
with a required demand quantity σ𝑖=1

𝑚 𝑠𝑖 −σ𝑗=1
𝑛 𝑑𝑗 is added to

balance the transportation model. The unit transportation cost
from any supply node to the dummy demand node is zero.

• The balanced transportation problem always has optimal
solution.

Transportation Problem

Example 12:

Note that there exists a redundant constraint!

Supply Demand

1 2 3 4

1 5 7 9 6

2 6 7 10 5

3 7 6 8 1

Minimize
11 12 13 14 21 22

23 24 31 32 33 34

5 7 9 6 6 7

10 5 7 6 8

x x x x x x

x x x x x x

+ + + + + +

+ + + + +

 s.t. 11 12 13 14 120x x x x+ + + =

 21 22 23 24 140x x x x+ + + =

 31 32 33 34 100x x x x+ + + =

 11 21 31 100x x x+ + =

 12 22 32 60x x x+ + =

 13 23 33 80x x x+ + =

 14 24 34 120x x x+ + =

 0ijx 1,2,3; 1,2,3,4i j= =

Transportation Problem

Transportation tableau:

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120

11x 12x 13x 14x

2

 6 7 10 5
140

21x 22x 23x 24x

3

 7 6 8 1
100

31x 32x 33x 34x

Demand 100 60 80 120 360

Transportation Problem
Transportation Algorithm

The transportation algorithm follows the exact steps of the simplex method:

Step 1: Determine a starting basic feasible solution and go to step 2

Step 2: Use the optimality condition to determine the entering variable from among all

nonbasic variables. If the optimality condition is satisfied, stop. Otherwise, go to step 3

Step 3: Use the feasibility condition to determine the leaving variable from among all basic

variables and find the new basic variable. Return to step 2

However, with the specific structure of the transportation model, the computations will be

organized in a more convenient form

Transportation Problem
Determine the Starting Solution

THE NORTHWEST-CORNER METHOD

Start at the northwest-corner cell (route) of the tableau

1. Allocate as much as possible from a supply node (a row) to the demand

nodes with the priority order from left to right until the supply capacity of the

current supply node is exhausted. Start with a new supply node (a new row)

1. Allocate as much as possible to a demand node (a column) from the supply

nodes with the priority order from top to bottom until the demand of the

current demand node is satisfied. Start with a new demand node (a new

column)

Transportation Problem
Determine the Starting Solution

Example 13: Consider the problem in Ex.12

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 100 20

2

 6 7 10 5
140 40 80 20

3

 7 6 8 1
100 100

Demand 100 60 80 120 360

Transportation Problem
Determine the Starting Solution

THE LEAST-COST METHOD

1. Assigning as much as possible to the cell with the smallest

unit transportation cost (break ties arbitrarily).

2. Discard the satisfied row or column and adjust the amounts

of supply and demand. Redetermine the cell with smallest

unit transportation cost.

3. Repeat until all demand nodes are satisfied (all supply nodes

are exhausted)

Transportation Problem
Determine the Starting Solution

Example 14: Consider the problem in Ex.12

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 100 20

2

 6 7 10 5
140 60 60 20

3

 7 6 8 1
100 100

Demand 100 60 80 120 360

Transportation Problem
Determine the Starting Solution

Note: We have a better starting solution

Northwest 100*5 20*7 40*7 80*10 20*5 100*1 1920C = + + + + + =

Least-cost 100*5 20*9 60*7 60*10 20*5 100*1 1900C = + + + + + =

Transportation Problem
Determine the Starting Solution

THE VOGEL APPROXIMATION METHOD (VAM)

VAM is an improved version of the least-cost method in order to produce a better starting

solution

1. For each row/column, determine a penalty measure by subtracting the smallest unit

cost element in the row/column from the next smallest unit cost element in the same

row/column

2. Identify the row or column with the largest penalty (break ties arbitrarily or select the

row/column such that the allocated amount can be maximized). Allocate as much as

possible to the cell with the least unit transportation cost in the selected row or column

3. Discard the satisfied row or column.

4. Go to step 1

Transportation Problem
Determine the Starting Solution

Example 15: Consider the problem in Ex.12

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 1

2

 6 7 10 5
140 1

3

 7 6 8 1
100 5

*
X X X 100

Demand 100 60 80 120 360

 1 1 1 4

Transportation Problem
Determine the Starting Solution

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 1

*
100

2

 6 7 10 5
140 1 X

3

 7 6 8 1
100 X X X 100

Demand 100 60 80 120 360

 1* 0 1 1

Transportation Problem
Determine the Starting Solution

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 1 100 X

2

 6 7 10 5
140 2

*
X 20

3

 7 6 8 1
100 X X X 100

Demand 100 60 80 120 360

 0 1 1

Transportation Problem
Determine the Starting Solution

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 2 100 X X

2

 6 7 10 5
140 3

*
X 60 20

3

 7 6 8 1
100 X X X 100

Demand 100 60 80 120 360

 0 1

Transportation Problem
Determine the Starting Solution

Total transportation cost of this starting solution:

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 # 100 X 20 X

2

 6 7 10 5
140 # X 60 60 20

3

 7 6 8 1
100 X X X 100

Demand 100 60 80 120 360

 #

VAM 100*5 20*9 60*7 60*10 20*5 100*1 1900C = + + + + + =

Transportation Problem
Finding Optimal Solution

In this section, the methods to find optimal solution for non-
degenerate transportation problems will be discussed. It is noted
that a transportation problem is non-degenerate if there are
exactly (𝑚 + 𝑛 − 1) cells assigned positive values in any
iteration.

Transportation Problem
Finding Optimal Solution

The Stepping-Stone Method

Find the starting solution. At each iteration, perform the following steps:

1. Compute the improvement indices 𝐼𝑖𝑗 for all empty cells 𝑖, 𝑗 in the tableau:

a. For each empty cell 𝑖, 𝑗 , draw a closed path which is comprised of horizontal

and vertical segments connecting that cell with other non-empty cells.

b. Alternatively assign the plus/minus signs for the vertices of the path, starting

with plus sign at the current cell.

c. The improvement index 𝐼𝑖𝑗 of cell 𝑖, 𝑗 is defined as the algebraic sum of unit

transportation costs on the path.

Transportation Problem
Finding Optimal Solution

2. If all improvement indices are nonnegative, the current solution is optimal.

Otherwise, the empty cell with the most negative value of 𝐼𝑖𝑗 will be selected for

improvement by reallocating the assigned value for all cells on the path as follows:

• Determine the minimum assigned value among all cells with minus sign: 𝑥𝑖𝑗
𝑚𝑖𝑛

• The value of the cells with minus sign will be subtracted by an amount 𝑥𝑖𝑗
𝑚𝑖𝑛.

• The value of the cells with plus sign will be added an amount 𝑥𝑖𝑗
𝑚𝑖𝑛.

3. Construct the new transportation tableau and return to step 1.

Transportation Problem
Finding Optimal Solution

Notes:

• There exists a unique path for each empty cell.

• Compared to the simplex method, the cells assigned positive values are
basic variable while the empty cells are nonbasic variable. The
improvement index 𝐼𝑖𝑗 associated with the empty cell 𝑖, 𝑗 is the reduced
cost associated with that cell.

• After each iteration, there will be one nonempty cell become empty.
There is no need to investigate this new empty cell in the next iteration.

Transportation Problem
Finding Optimal Solution

Example 16:

Empty cells: (1,3), (1,4), (2,1), (3,1), (3,2), (3,3)

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 100 20

2

 6 7 10 5
140 40 80 20

3

 7 6 8 1
100 100

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

Iteration 1: Consider cell (1,3): (Why?)

𝐼13 = +9 − 10 + 7 − 7 = −1: Not optimal; 𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛 20,80 = 20 (Note that: 𝐼14 =
1, 𝐼21 = 1, 𝐼31 = 6, 𝐼32 = 3, 𝐼33 =2). Hence, 𝑥12 = 0, 𝑥13 = 20, 𝑥22 = 60, 𝑥23 = 60

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 - 7 + 9 6
120 100 20

2

 6 7 10 5
140 40 80 20

 + -

3

 7 6 8 1
100 100

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

Iteration 2:

Cell (1,4): 𝐼14 = +6 − 5 + 10 − 9 = +2 ⇒ Cell (1,4) satisfies the optimality condition

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 - 9 + 6
120 100 20

2

 6 7 10 5
140 60 60 20

 + -

3

 7 6 8 1
100 100

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

Cell (2,1): 𝐼21 = +6 − 5 + 9 − 10 =0 ⇒ Cell (2,1) satisfies the optimality condition

Supply

Node

Demand Node Supply
1 2 3 4

1

 - 5 7 + 9 6
120 100 20

2

 6 7 10 5
140 60 60 20

 + -

3

 7 6 8 1
100 100

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

Cell (3,1): 𝐼31 = +7 − 5 + 9 − 10 + 5 − 1 =5 ⇒ Cell (3,1) satisfies the optimality condition

Supply

Node

Demand Node Supply
1 2 3 4

1

 - 5 7 + 9 6
120 100 20

2

 6 7 - 10 + 5
140 60 60 20

3

 7 6 8 1
100 100

 + -

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

Cell (3,2): 𝐼32 = +6 − 7 + 5 − 1 = 3 ⇒ Cell (3,2) satisfies the optimality condition

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 100 20

2

 6 - 7 10 + 5
140 60 60 20

3

 7 6 8 1
100 100

 + -

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

Cell (3,3): 𝐼33 = +8 − 10 + 5 − 1 = 2 ⇒ Cell (3,3) satisfies the optimality condition

We have optimal solution!

Supply

Node

Demand Node Supply
1 2 3 4

1

 5 7 9 6
120 100 20

2

 6 7 - 10 + 5
140 60 60 20

3

 7 6 8 1
100 100

 + -

Demand 100 60 80 120 360

Transportation Problem
Finding Optimal Solution

The Modified Distribution Method (MODI) - The Method of Multipliers

In this method, the improvement indices are computed based on the dual

variables of the transportation problem. The principle of this method is as follows:

Denote 𝑢𝑖 𝑖 = 1,2,… ,𝑚 , 𝑣𝑗 𝑗 = 1,2,… , 𝑛 : dual variables associated with supply

node i and demand node j . We have:

1. 𝐼𝑖𝑗 = 𝑐𝑖𝑗 − 𝑢𝑖 + 𝑣𝑗 = 0 at nonempty cells.

2. 𝐼𝑖𝑗 = 𝑐𝑖𝑗 − 𝑢𝑖 + 𝑣𝑗 ≠ 0 at empty cells.

From the set of equations developed from the values of nonempty cells, we can

determine all values of 𝑢𝑖 𝑖 = 1,2,… ,𝑚 and 𝑣𝑗 𝑗 = 1,2,… , 𝑛

Transportation Problem
Finding Optimal Solution

Example 17:

Supply

Node

Demand Node Supply
1 ()1v 2 ()2v 3 ()3v 4 ()4v

1 ()1u

 10 0 20 11
15 5 10

2 ()2u

 12 7 9 20
75 25 15 35

3 ()3u

 0 14 16 18
20 20

Demand 5 35 15 55 110

Transportation Problem
Finding Optimal Solution

⇒ 𝐼13 = 18, 𝐼14 = −2, 𝐼21 = −5, 𝐼31 = −15, 𝐼32 = 9, 𝐼33 = 9 (𝑍 = 1420)

⇒ The first iteration: Select cell (3,1)

1 1 1 2

2 2 2 3

2 4 3 4

10, 0

7, 9

20, 18

u v u v

u v u v

u v u v

+ = + =

+ = + =

+ = + =

1select 0u =

1 2 3

1 2 3 4

0, 7, 5

10, 0, 2, 13

u u u

v v v v

= = =

= = = =

Transportation Problem
Finding Optimal Solution

This tableau is optimal!

Supply

Node

Demand Node Supply
1 2 3 4

1

 10 0 20 11
15 15

2

 12 7 9 20
75 20 15 40

3

 0 14 16 18
20 5 15

Demand 5 35 15 55 110

Transportation Problem
Finding Optimal Solution

Degeneracy

1. If degeneracy occurs at starting tableau ⇒ Assign 0 to an
empty cell and deal with this cell as a nonempty one.

2. If degeneracy occurs at an iteration (when there are two
nonempty cells associated with the minimum value on the
path) ⇒ Assign to one of them and deal with this cell as a
nonempty one (usually select the cell with smaller unit
transportation cost).

Transportation Problem
Finding Optimal Solution

Example 18:

Supply

Node

Demand Node Supply
1 2 3

1

 8 5 16
70 70

2

 15 10 7
130 80 50

3

 3 9 10
80 30 50

Demand 150 80 50 280

Transportation Problem
Finding Optimal Solution

After iteration 1 (pivot at cell (3,1)):

Supply

Node

Demand Node Supply
1 2 3

1

 8 5 16
70 70

2

 15 10 7
130 50 80

3

 3 9 10
80 30 50

Demand 150 80 50 280

Transportation Problem
Finding Optimal Solution

After iteration 2 (pivot at cell (2,3)):

Assign 0 to cell (3,3)!

Supply

Node

Demand Node Supply
1 2 3

1

 8 5 16
70 70

2

 15 10 7
130 *** 80 50

3

 3 9 10
80 80 ***

Demand 150 80 50 280

Transportation Problem
Finding Optimal Solution

Multiple Solutions

The transportation problem will has multiple solutions if the
improvement index of an empty cell equals to 0 at the optimal
tableau

Reason: Pivoting at that empty cell will result in a new solution
with the same (optimal) objective function.

Assignment Problem

• A specific type of LP that aims at assigning a set of n jobs to a
set of n machines/workers/employees.

• Objective: minimize the total cost or total time

Assignment problem can be considered as a balanced
transportation problem in which all supplies and demands are
equal to 1. However, the methods developed for balanced
transportations problems are very inefficient in this case
because the problem is highly degenerate.

Assignment Problem

Denote 𝑐𝑖𝑗: cost of assigning job j to machine i

Decision variables

𝑥𝑖𝑗 = ቊ
1 if job 𝑗 is assigned to machine 𝑖
0 otherwise

Problem:

Minimize Z = σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗
s.t. σ𝑖=1

𝑛 𝑥𝑖𝑗 = 1 ∀𝑗

σ𝑗=1
𝑛 𝑥𝑖𝑗 = 1 ∀𝑖

𝑥𝑖𝑗 = 0 or 1 ∀𝑖, 𝑗

Assignment Problem
The Hungarian Method

Determine the cost matrix of the assignment problem

Step 1: Determine the reduced cost matrix of the problem

• Find the minimum element in each row of the cost matrix;
subtract this minimum cost from each cost in the same row of
the cost matrix

• Find the minimum element in each column of the new matrix;
subtract this minimum cost from each cost in the same column
of the matrix

Assignment Problem
The Hungarian Method

Step 2:

• Draw the minimum number of lines (horizontal or vertical) that are needed
to cover all the zeros in the reduced cost matrix. If n lines are drawn,
stop: the optimal solution is found and determined from the covered
zeros. Otherwise, go to step 3.

Note: The optimal solution is defined from a set of independent zeros in
the final matrix, which is the set of zeros such that there is no horizontal or
vertical line that covers more than one of them.

Step 3:

• Find the smallest uncovered element in the reduced cost matrix. Subtract
this value from each uncovered element and add this value to each
element that is covered by two lines. Return to step 2

Assignment Problem
The Hungarian Method

Example 19:

M/C Job

1 2 3 4 5

1 2 3 5 1 4

2 -1 1 3 6 2

3 -2 4 3 5 0

4 1 3 4 1 4

5 7 1 2 1 2

Assignment Problem
The Hungarian Method

Reduced cost matrix:

 M/C Job
iu = Min ijc

 1 2 3 4 5

 1 2 3 5 1 4 1

 2 -1 1 3 6 2 -1

 3 -2 4 3 5 0 -2

 4 1 3 4 1 4 1
 5 7 1 2 1 2 1

Assignment Problem
The Hungarian Method

 M/C Job

 1 2 3 4 5

 1 1 2 4 0 3

 2 0 2 4 7 3

 3 0 6 5 7 2

 4 0 2 3 0 3

 5 6 0 1 0 1

ju = Min ij ic u− 0 0 1 0 1

Assignment Problem
The Hungarian Method

(Minimum number of lines: 3 < 5)

 M/C Job

 1 2 3 4 5

 1 1 2 3 0 2

 2 0 2 3 7 2

 3 0 6 4 7 1

 4 0 2 2 0 2

 5 6 0 0 0 0

Assignment Problem
The Hungarian Method

(Minimum number of lines: 4 < 5)

 M/C Job

 1 2 3 4 5

 1 1 1 2 0 1

 2 0 1 2 7 1

 3 0 5 3 7 0

 4 1 1 0 1

 5 7 0 0 1 0

Assignment Problem
The Hungarian Method

Optimal Solution

 M/C Job

 1 2 3 4 5

 1 1 0 1 0 0

 2 0 0 1 7 0

 3 1 5 3 8 0

 4 0 0 0 0 0

 5 8 0 0 2 0

Assignment Problem
The Hungarian Method

There are multiple solutions:

1. 𝑥12 = 𝑥21 = 𝑥35 = 𝑥44 = 𝑥53 = 1

2. 𝑥14 = 𝑥22 = 𝑥35 = 𝑥41 = 𝑥53 = 1

3. 𝑥14 = 𝑥21 = 𝑥35 = 𝑥42 = 𝑥53 = 1

4. 𝑥14 = 𝑥21 = 𝑥35 = 𝑥43 = 𝑥52 = 1

Optimal objective value = 5

Maximum Flow Problem

Consider the following network’s problem: Transport the
maximum amount of flow from a starting point (the source node)
to a terminal point (the sink node)

The network with directed arcs will be considered first and
expansion to networks with undirected arcs will then be
investigated.

Maximum Flow Problem
Network with Directed Arcs

Consider the network with 𝑚 nodes and 𝑛 arcs. The capacity of arc 𝑖, 𝑗 is 𝑐𝑖𝑗 (𝑖, 𝑗 =

1,2, . . , 𝑚)

Decision variables: 𝑥𝑖𝑗 - flow through arc 𝑖, 𝑗

Denote 𝑓 : total flow from source node 1 to sink node 𝑚

The problem can be formulated as an LP:

Max 𝑓

s.t. σ𝑗=1
𝑚 𝑥𝑖𝑗 − σ𝑘=1

𝑚 𝑥𝑘𝑖 = ቐ
𝑓 if 𝑖 = 1
0 if 𝑖 = 2,3, … ,𝑚 − 1
−𝑓 if 𝑖 = 𝑚

𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗 ∀(𝑖, 𝑗)

𝑥𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗)

Maximum Flow Problem
Network with Directed Arcs

Example 20:

2

1

3

4

5

6

24,4 x

12,9 x

13,8 x

32,2 x

25,4 x

36,2 x

35,5 x

46,5 x

56,6 x

Max f

 s.t.
12 13x x f+ = 12 13 329; 8; 2x x x

 24 25 12 32 0x x x x+ − − = 24 25 354; 4; 5x x x

 32 35 36 13 0x x x x+ + − = 36 46 562; 5; 6x x x

 46 24 0x x− = , 56 25 35 0x x x− − =

 36 46 56x x x f− − − = −

 12 13 32 24 25 35 36 46 56, , , , , , , , 0x x x x x x x x x

Maximum Flow Problem
Network with Directed Arcs

Ford-Fulkerson’s Labeling Algorithm

Can be applied when 𝑐𝑖𝑗’s are integers or rational numbers

General Principle: An unlabeled node j will be labeled based
on a labeled node i which is connected to j by arc 𝑖, 𝑗 . The
label of node j will have the form 𝑖±, 𝑣𝑗 , in which:

• 𝑣𝑗 : the amount of flow changed between i and j.

• 𝑖 + : if the flow from i to j increases by an amount 𝑣𝑗.

• 𝑖 − : if the flow from i to j decreases by an amount 𝑣𝑗.

Maximum Flow Problem
Network with Directed Arcs

Step 1:

1. Find a starting feasible solution for the problem (for instance,
𝑥𝑖𝑗 = 0 ∀(𝑖, 𝑗)).

2. Assign label −,∞ to node 1 (the source node): this means
that the source node has unlimited supply capacity.

Maximum Flow Problem
Network with Directed Arcs

Step 2: Successively assign label for unlabeled nodes as follows

1. Select a labeled node – At the beginning, only node 1 is labeled node.

2. Consider an unlabeled node j that is directly connected to i:

a. If 𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗: assign the label 𝑖+, 𝑣𝑗 to node j, in which 𝑣𝑗 = 𝑀𝑖𝑛 𝑣𝑖 , 𝑐𝑖𝑗 − 𝑥𝑖𝑗 . Meaning:

the maximum increase of amount of flow from i to j is the smaller value between the

amount of flow that can be transported from i and the remaining capacity of arc 𝑖, 𝑗 .

b. If 𝑥𝑗𝑖 > 0: assign the label 𝑖−, 𝑣𝑗 to node j, in which 𝑣𝑗 = 𝑀𝑖𝑛 𝑣𝑖 , 𝑥𝑗𝑖 . Meaning:

take back to node j a portion of the amount of flow that has been transported to i.

This step is repeated until:

• Node m has been labeled ⇒ A breakthrough path exists between the source node and

the sink node. Then, go to step 3. Or,

• Cannot find a breakthrough path. Then, go to step 4.

Maximum Flow Problem
Network with Directed Arcs

Step 3:

The breakthrough path defined in step 3 is a flow augmenting path. The
labeling procedure has assigned a label 𝑖+, 𝑣𝑚 to node 𝑚. Revise the
starting feasible solution to get a better feasible solution as follows:

• 𝑥𝑖𝑗
′ = 𝑥𝑖𝑗 + 𝑣𝑚 if 𝑖, 𝑗 is on the flow augmenting path and node j has

the label 𝑖+, 𝑣𝑗
• 𝑥𝑗𝑖

′ = 𝑥𝑗𝑖 − 𝑣𝑚 if 𝑖, 𝑗 is on the flow augmenting path and node j has

the label 𝑖−, 𝑣𝑗

Remove all labels and return to step 2.

Maximum Flow Problem
Network with Directed Arcs

Step 4:

Optimal solution is achieved. The maximum flow can be determined from the sum of all

labels 𝑣𝑚’s received in step 3 (only if the starting solution is 𝑥𝑖𝑗 = 0 ∀(𝑖, 𝑗)).

Notes:

1. The purpose of step 2 is to find a breakthrough path that connects the source node

and the sink node. Therefore, it is not necessary to determine the labels of all nodes.

The target should be finding a path such that the augmented flow is as large as

possible

⇒ Rule of thumb: starting from a labeled node, select an unlabeled node j such that the

assigned label 𝑣𝑗 to that node is largest.

Maximum Flow Problem
Network with Directed Arcs

2. In each iteration (step 2), each node has a unique label.

3. Other ways to determine maximum flow
a. Total algebraic flows at the source node.

b. Total algebraic flows at the sink node.

c. When the breakthrough path does not exist (the last iteration), the

network’s nodes can be divided into two sets: Set 𝑋 includes the source

node and set 𝑋 includes the sink node. The arcs that connect 𝑋 and 𝑋 is

called a cut set. Total transport capacity of the cut set 𝑐 𝑋, 𝑋 is the

maximum amount of flow that can be transported from the source node to

the sink node.

Maximum Flow Problem
Network with Directed Arcs

Example 21:

2

1

3

4

5

6

4

9

8

2
4

2

5

5

6

Maximum Flow Problem
Network with Directed Arcs

Iteration 1: starting feasible solution: zeros for all arcs

Node 1: −,∞ Node 2: 1+, 9 Node 4: 2+, 4 Node 6: 4+, 4

Breakthrough path: 1-2-4-6.

New feasible solution: 𝑥12 = 𝑥24 = 𝑥46 = 4, other variables = 0

Iteration 2:

Node 1: −,∞ Node 3: 1+, 8 Node 5: 3+, 5 Node 6: 5+, 5

Breakthrough path: 1-3-5-6.

New feasible solution: 𝑥12 = 𝑥24 = 𝑥46 = 4, 𝑥13 = 𝑥35 = 𝑥56 =5, other variables = 0

Maximum Flow Problem
Network with Directed Arcs

Iteration 3:

Node 1: −,∞ Node 2: 1+, 5 Node 5: 2+, 4 Node 6: 5+, 1

Breakthrough path: 1-2-5-6.

New feasible solution: 𝑥12 = 5, 𝑥24 = 𝑥46 = 4 , 𝑥13 = 𝑥35 =5, 𝑥56 = 6 , 𝑥25 = 1 , other
variables = 0

Iteration 4:

Node 1: −,∞ Node 3: 1+, 3 Node 6: 3+, 2

Breakthrough path: 1-3-6.

New feasible solution: 𝑥12 =5, 𝑥24 = 𝑥46 = 4, 𝑥13 =7, 𝑥35 =5, 𝑥56 = 6, 𝑥36 =2, 𝑥25 = 1,
𝑥32 =0

Maximum Flow Problem
Network with Directed Arcs

Iteration 5:

Node 1: −,∞ Node 2: 1+, 4 Node 5: 2+, 3 Node 3: 1+, 1

The breakthrough path does not exist: 𝑋 = 1,2,3,5 𝑋 = 4,6

The current solution is optimal. The maximum flow from node 1 to node 6 can be

determined as follows:

σ𝑣𝑚 = 4 + 5 + 1 + 2 = 12 or 𝑥46 + 𝑥36 + 𝑥56 = 4 + 2 + 6 = 12

or 𝑥12 + 𝑥13 = 5 + 7 = 12 or 𝑐 𝑋, 𝑋 = 𝑐24 + 𝑐36 + 𝑐56 = 4 + 2 + 6 = 12

Maximum Flow Problem
Network with Directed Arcs

Example 22:

2

1

3

4

5

6

5

7

10

9
1

6

3

9

5

Maximum Flow Problem
Network with Directed Arcs

Iteration 1: starting feasible solution: zeros for all arcs

Node 1: −,∞ Node 3: 1+, 10 Node 2: 3+, 9 Node 4: 2+, 5 Node 6: 4+, 5

Breakthrough path: 1-3-2-4-6.

New feasible solution: 𝑥13 = 𝑥32 = 𝑥24 = 𝑥46 = 5, other variables = 0

Iteration 2:

Node 1: −,∞ Node 2: 1+, 7 Node 5: 2+, 1 Node 6: 5+, 1

Breakthrough path: 1-2-5-6.

New feasible solution: 𝑥13 = 𝑥32 = 𝑥24 = 𝑥46 = 5, 𝑥12 = 𝑥25 = 𝑥56 = 1, other variables = 0

Maximum Flow Problem
Network with Directed Arcs

Iteration 3:

Node 1: −,∞ Node 3: 1+, 5 Node 6: 3+, 5

Breakthrough path: 1-3-6.

New feasible solution: 𝑥13 = 10, 𝑥32 = 𝑥24 = 𝑥46 = 5, 𝑥12 = 𝑥25 = 𝑥56 = 1, 𝑥36 = 5 , other
variables = 0.

Iteration 4:

Node 1: −,∞ Node 2: 1+, 6 Node 3*: 2−, 5 Node 5: 3+, 3 Node 6: 5+, 3

Breakthrough path: 1-2-3-5-6.

New feasible solution: 𝑥13 = 10, 𝑥32 = 2, 𝑥24 = 𝑥46 = 5, 𝑥12 = 4, 𝑥25 = 1, 𝑥56 = 4 𝑥36 = 5,
𝑥35 = 3

Maximum Flow Problem
Network with Directed Arcs

Iteration 5:

Node 1: −,∞ Node 2: 1+, 3 Node 3*: 2−, 2 Node 6: 3+, 1

Breakthrough path: 1-2-3-6.

New feasible solution: 𝑥13 = 10, 𝑥32 = 1, 𝑥24 = 𝑥46 = 5, 𝑥12 = 5, 𝑥25 = 1, 𝑥56 = 4 𝑥36 = 6,

𝑥35 = 3

Iteration 6:

Node 1: −,∞ Node 2: 1+, 2 Node 3*: 2−, 1

The breakthrough path does not exist: 𝑋 = 1,2,3 𝑋 = 4,5,6
The current solution is optimal.

The maximum flow: 𝑐 𝑋, 𝑋 = 𝑐24 + 𝑐25 + 𝑐35 + 𝑐36 = 5 + 1 + 3 + 6 = 15

Maximum Flow Problem
Network with Directed Arcs

Note:

For problem with multiple source nodes with limited supply
capacity and multiple sink nodes with limited demand, an
artificial source node and an artificial sink node will be
introduced and the Ford-Fulkerson’s algorithm can be applied to
find optimal solution. It is also noted the maximum flow problem
is a transportation problem in which the objective is to maximize
the amount of goods transported from supply nodes to demand
nodes.

Maximum Flow Problem
Network with Undirected Arcs

Ford-Fulkerson’s algorithm can be applied. However, it is noted that there
exist 2 variables for an undirected arc

Example 23: 4

1

2 3

20
10

20

30

10

30

40

5

20

5

Maximum Flow Problem
Network with Undirected Arcs

Iteration 1: starting feasible solution: zeros for all arcs

Node 1: −,∞ Node 3: 1+, 30 Node 5: 3+, 20

Breakthrough path: 1-3-5.

New feasible solution: 𝑥13 = 𝑥35 = 20, other variables = 0.

Iteration 2:

Node 1: −,∞ Node 2: 1+, 20 Node 3: 2+, 20 Node 4: 3+, 10
Node 5: 4+, 10
Breakthrough path: 1-2-3-4-5.

New feasible solution: 𝑥12 = 𝑥23 = 𝑥34 = 𝑥45 = 10, 𝑥13 = 𝑥35 = 20, other variables

= 0.

Maximum Flow Problem
Network with Undirected Arcs

Iteration 3:

Node 1: −,∞ Node 4: 1+, 10 Node 5: 4+, 10

Breakthrough path: 1-4-5.

New feasible solution: 𝑥14 = 10, 𝑥12 = 𝑥23 = 𝑥34 = 10 , 𝑥45 = 20 , 𝑥13 = 𝑥35 = 20 , other
variables = 0.

Iteration 4:

Node 1: −,∞ Node 2: 1+, 10 Node 5: 2+, 10

Breakthrough path: 1-4-5.

New feasible solution: 𝑥14 = 10, 𝑥12 = 20, 𝑥23 = 𝑥34 = 10, 𝑥45 = 20, 𝑥13 = 𝑥35 = 20, 𝑥25 =
10, 𝑥43 = 0.

Maximum Flow Problem
Network with Undirected Arcs

Iteration 5:

Node 1: −,∞ Node 3: 1+, 10 Node 2*: 3−, 10 Node 5: 2+, 10

Breakthrough path: 1-3-2-5.

New feasible solution: 𝑥14 = 10, 𝑥12 = 20, 𝑥23 = 0, 𝑥34 = 10 , 𝑥45 = 20 , 𝑥13 =
30, 𝑥35 = 20, 𝑥25 = 20, 𝑥43 = 0.

Iteration 6:

Node 1: −,∞

The breakthrough path does not exist: 𝑋 = 1 𝑋 = 2,3,4,5

The current solution is optimal.

Maximum flow: 𝑐 𝑋, 𝑋 = 𝑐12 + 𝑐13 + 𝑐14 = 20 + 30 + 10 = 60

Shortage Path Problem

Consider a network with m nodes and n directed arcs and a cost 𝑐𝑖𝑗 is associated with

each arc 𝑖, 𝑗 . The shortage path problem is to find the shortage (least costly) path from

node 1 to node m.

The problem can be formulated as an LP as follows:

Min σ𝑖=1
𝑚 σ𝑗=1

𝑚 𝑐𝑖𝑗𝑥𝑖𝑗

s.t. σ𝑗 𝑥𝑖𝑗 − σ𝑘 𝑥𝑘𝑖 = ቐ
1 if 𝑖 = 1
0 if 𝑖 = 2,3, … ,𝑚 − 1
−1 if 𝑖 = 𝑚

𝑥𝑖𝑗 = 0 or 1 ∀(𝑖, 𝑗)

In which: 𝑥𝑖𝑗 = 0: 𝑖, 𝑗 is not included in the path,

𝑥𝑖𝑗 = 1: 𝑖, 𝑗 is included in the path.

Shortage Path Problem
Dijkstra’s Labeling Algorithm

Step 1:

Assign label 𝐿𝑖 = −, 𝑣𝑖 for network’s nodes, starting with 𝑣1 =
0, 𝑣2 = 𝑣3 = ⋯ = 𝑣𝑚 = ∞.

Step 2:

1. If 𝑣𝑗 ≤ 𝑣𝑖 + 𝑐𝑖𝑗 ∀(𝑖, 𝑗) ⇒ The current solution is optimal.

2. If there exist an arc (𝑝, 𝑞) such that 𝑣𝑞 ≤ 𝑣𝑝 + 𝑐𝑝𝑞 ⇒ reassign

the label of node 𝑞: 𝐿𝑞 = 𝑝, 𝑣𝑞 = 𝑣𝑝 + 𝑐𝑝𝑞 . Return to check

2.1

Shortage Path Problem
Dijkstra’s Labeling Algorithm

Example 24:

Find the shortage path from 1 to 4 for the following network

2

1

3

42

1−

4−

6−

4

Shortage Path Problem
Dijkstra’s Labeling Algorithm

Iteration 1: 𝑣1 = 0, 𝑣2 = 𝑣3 = 𝑣4 = ∞
Iteration 2: ∞ = 𝑣3 > 𝑣1 + 𝑐13 = −1 ⇒ 𝑣3 = −1, 𝐿3 = 1,−1
Iteration 3: ∞ = 𝑣2 > 𝑣1 + 𝑐12 = 2 ⇒ 𝑣2 = 2, 𝐿2 = 1,2
Iteration 4: −1 = 𝑣3> 𝑣2 + 𝑐23 = −2 ⇒ 𝑣3 = −2, 𝐿3 = 2,−2
Iteration 5: ∞ = 𝑣4 > 𝑣2 + 𝑐24 = 6 ⇒ 𝑣4 = 6, 𝐿4 = 2,6 :

(redundant step!)

Iteration 6: 6 = 𝑣4 > 𝑣3 + 𝑐34 = −8 ⇒ 𝑣4 = −8, 𝐿4 = 3,−8

The current solution is optimal: 𝑣𝑗 ≤ 𝑣𝑖 + 𝑐𝑖𝑗 ∀(𝑖, 𝑗).

The shortest path: 1-2-3-4. Minimum “cost” 𝑣4 = −8.

Shortage Path Problem
Labeling Algorithm with Nonnegative Costs

Let 𝑁 = 1,2,3,… ,𝑚 be the set of network’s nodes.

Step 1: Set 𝑣1 = 0 and 𝑋 = 1 .

Step 2: Set 𝑋 = 𝑁 − 𝑋, 𝑋, 𝑋 = 𝑖, 𝑗 𝑖 ∈ 𝑋, 𝑗 ∈ 𝑋 .

Select 𝑖, 𝑗 ∈ 𝑋, 𝑋 such that:

𝑣𝑝 + 𝑐𝑝𝑞 = min
𝑖,𝑗 ∈ 𝑋,𝑋

𝑣𝑖 + 𝑐𝑖𝑗

Assign 𝑣𝑞 = 𝑣𝑝 + 𝑐𝑝𝑞 and adjust 𝑋 = 𝑋 ∪ 1 .

Repeat step 2 exactly 𝑚 − 1 times to get the optimal solution.

Shortage Path Problem
Labeling Algorithm with Nonnegative Costs

Example 24:

Consider the shortage path problem from node 1 to node 5 for
the following network

1

4

3

42

1
0

3

2

5

3

2

5

Shortage Path Problem
Labeling Algorithm with Nonnegative Costs

Iteration 1: 𝑣1 = 0, 𝑋 = 1 , 𝑋 = 2,3,4,5

⇒ 𝑋,𝑋 = 1,2 , 1,3 , 1,4 : 𝑣1 + 𝑐12 = 2; 𝑣1 + 𝑐13 = 2; 𝑣1 + 𝑐14 = 3

Select 𝑝, 𝑞 = 1,2 .

Iteration 2: 𝑣2 = 2, 𝑋 = 1,2 , 𝑋 = 3,4,5

⇒ 𝑋,𝑋 = 1,3 , 1,4 , 2,5 : 𝑣1 + 𝑐13 = 2; 𝑣1 + 𝑐14 = 3; 𝑣2 + 𝑐25 = 7

Select 𝑝, 𝑞 = 1,3 .

Iteration 3: 𝑣3 =2, 𝑋 = 1,2,3 , 𝑋 = 4,5

⇒ 𝑋, 𝑋 = 1,4 , 2,5 , 3,5 : 𝑣1 + 𝑐14 = 3; 𝑣2 + 𝑐25 = 7; 𝑣3 + 𝑐35 = 7

Select 𝑝, 𝑞 = 1,4 .

Shortage Path Problem
Labeling Algorithm with Nonnegative Costs

Iteration 4: 𝑣4 = 3, 𝑋 = 1,2,3,4 , 𝑋 = 5

⇒ 𝑋, 𝑋 = 2,5 , 3,5 , 4,5 : 𝑣2 + 𝑐25 = 7; 𝑣3 + 𝑐35 = 7; 𝑣4 + 𝑐45 = 3

Select 𝑝, 𝑞 = 4,5 .

Iteration 5: 𝑣5 = 3, 𝑋 = 1,2,3,4,5 , 𝑋 = ∅

The shortage path: 1-4-5. Minimum “cost”: 𝑣5 = 3

Shortage Path Problem
Labeling Algorithm with Nonnegative Costs

Note:

• In some cases, we have to deal with the longest path problem
(the case of profit instead of cost)

• To find the solution for the longest path problem, change the
sign of all “profits” on arcs and apply the labeling algorithms for
the shortage path problem.

