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Introduction

LP problem is an optimization problem in which

•  The objective function is a linear function

•  Each constraint is a linear equation or linear inequality

Example 1: Product Mix 

Produce n products from m types of material.  

Available on-hand inventory of material 𝑖 (𝑖 = 1,2,… ,𝑚): 𝑏𝑖
Amount of material i used for one unit of product 𝑗 (𝑗 = 1,2,… , 𝑛): 𝑎𝑖𝑗
Profit of one unit of product j: 𝑐𝑗

Problem: determine production volumes of products so as to maximize total profit.



Introduction

Denote 𝑥𝑗 (𝑗 = 1,2, . . , 𝑛): production volume of product j.  

Objective Function: Maximize 𝑍 = σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

Constraints:

* Material constraints: σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ∀𝑖 = 1,2,… ,𝑚

* Variable constraints: 𝑥𝑗 ≥ 0 ∀𝑗 = 1,2,… , 𝑛



Introduction

Example 2:  Diet Problem

Choose a diet from a set of n available foods in order to
guarantee m nutritional requirements while minimizing cost

Daily required number of units of nutrient 𝑖 (𝑖 = 1,2, … ,𝑚): 𝑏𝑖
Number of units of nutrient i in one unit of food j: 𝑎𝑖𝑗

Cost per unit of food j: 𝑐𝑗



Introduction

Denote 𝑥𝑗 (𝑗 = 1,2, . . , 𝑛): number of units of food j in the diet 

Objective Function: Minimize 𝑍 = σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

Constraints:

* Nutrition constraints: σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ∀𝑖 = 1,2,… ,𝑚

* Variable constraints: 𝑥𝑗 ≥ 0 ∀𝑗 = 1,2,… , 𝑛
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Example 3:  Transportation problem

There are m suppliers and n customers.  

Supply capacity of supplier 𝑖 (𝑖 = 1,2, … ,𝑚): 𝑠𝑖
Demand of customer 𝑗 (𝑗 = 1,2, … , 𝑛): 𝑑𝑗
Variable cost of shipping one unit of goods from supplier i to 
customer j : 𝑐𝑖𝑗

Determine the shipping plan so as to minimize total transportation 
cost.



Introduction

Denote 𝑥𝑖𝑗 (𝑖 = 1,2, . . , 𝑚; 𝑗 = 1,2, . . , 𝑛):  : number of units shipped 
from supplier i to customer j.  

Objective Function: Minimize 𝑍 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗
Constraints:

* Supply constraints: σ𝑗=1
𝑛 𝑥𝑖𝑗 ≤ 𝑠𝑖 ∀𝑖 = 1,2, … ,𝑚

* Demand constraints: σ𝑖=1
𝑚 𝑥𝑖𝑗 ≥ 𝑑𝑗 ∀𝑗 = 1,2, … , 𝑛

* Variable constraints: 𝑥𝑖𝑗 ≥ 0 (𝑖 = 1,2, . . , 𝑚; 𝑗 = 1,2, . . , 𝑛)



Background Concepts

Standard form of an LP problem

Minimize σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

s.t. σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 ≥ 0 ∀𝑖 = 1,2,… ,𝑚

𝑥𝑗 ≥ 0 ∀𝑗 = 1,2,… , 𝑛

(Note: some textbooks use “Maximization”)



Background Concepts

Matrix form

Minimize 𝐜𝐓𝐱
s.t. 𝐀𝐱 = 𝐛 ≥ 𝟎

𝐱 ≥ 𝟎
In which 

• c, x are column vectors with dimension n (𝐜, 𝐱 ∈ 𝐑𝑛 )

• 𝐜𝐓 is the transpose of c - a row vector with dimension n

• b is a column vector with dimension m (𝐛 ∈ 𝐑𝑚 )

• A is a mxn matrix (𝐀 ∈ 𝐑𝑚x𝑛 )



Background Concepts

Convert an LP to Standard Form

1. max σ𝑗 𝑐𝑗𝑥𝑗 ⟹ min σ𝑗(−𝑐𝑗)𝑥𝑗
2. σ𝑗 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ⟹ σ𝑗 𝑎𝑖𝑗𝑥𝑗 + 𝑦𝑖 = 𝑏𝑖, 𝑦𝑖 ≥ 0

The added variable 𝑦𝑖: slack variable for the constraint

3. σ𝑗 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ⟹ σ𝑗 𝑎𝑖𝑗𝑥𝑗 − 𝑦𝑖 = 𝑏𝑖, 𝑦𝑖 ≥ 0

The added variable 𝑦𝑖: surplus or excess variable 

4. σ𝑗 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 , 𝑏𝑖 < 0 ⟹ σ𝑗(−𝑎𝑖𝑗)𝑥𝑗 = −𝑏𝑖
5. If variable 𝑥𝑖 can have either nonnegative or negative values

then 𝑥𝑖 = 𝑥𝑖
+−𝑥𝑖

− in which 𝑥𝑖
+, 𝑥𝑖

− ≥ 0.



Background Concepts

Example 4:

Consider the following LP:

 max  1 23 2x x+  

 s.t. 1 2 1x x+   

  1 22 2x x−   

  1 0x    



Background Concepts

The standard form:

 min  1 2 23 2 2x x x+ −− − +  

 s.t. 1 2 2 3 1x x x x+ −+ − + =  

  1 2 2 42 2x x x x+ −− + − =  

  1 2 2 3 4, , , , 0x x x x x+ −    



Background Concepts

Feasible Solution

Def.:  Consider the LP model:

Minimize 𝐜𝐓𝐱

s.t. 𝐀𝐱 = 𝐛 ≥ 𝟎

𝐱 ≥ 𝟎

Vector 𝐱 ∈ 𝐑𝑛 which satisfies 𝐀𝐱 = 𝐛 and 𝐱 ≥ 𝟎 is a feasible solution of the LP

• The set of all feasible solutions: feasible region

• If the feasible region does not exist, the LP problem is an infeasible problem



Background Concepts

Example 5:

max  Z = 1 23 5x x+  

Constraints: 

   1x   4  

   22x   12  

   13x  +  22x  18  

  1 2, 0x x   

Feasible region of the model: crossed area in 
the figure

2

4

6

8

2 4 6 8



Background Concepts

Convex Set

Def. A set of points S is a convex set if the line segment
connecting any pair of point in S is wholly contained in S

Convex Convex Nonconvex

A B

CD

E



Background Concepts

Extreme Point

Def.  For any convex set, a point P in S is an extreme point if it does not lie 
on any line segment connecting two distinct points in the set

In the above figures, the extreme points are any point in the circumference 
of the circle (first figure) and A, B, C, D (second figure)

Note that 

• The feasible region of an LP problem is a convex set

• The optimal solution of an LP problem is one of the extreme points of the 
feasible region



Background Concepts

Basic and Nonbasic Variables

Consider an LP in standard form

 Min   1 1 2 2 ... n nZ c x c x c x= + + +  

 s.t.  11 1 12 2 1 1... n na x a x a x b+ + + =  

   21 1 22 2 2 2... n na x a x a x b+ + + =  

   … 

   1 1 2 2 ...m m mn n ma x a x a x b+ + + =  

   ( )0 1,2,...,ix i n =  
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Define:

 

11 12 1

21 22 2
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n
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m m mn

a a a

a a a
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 
 
 =
 
 
 
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x

 
 
 =
 
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 
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2
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b

b

b

 
 
 =
 
 
 

b  



Background Concepts

Suppose that 𝑛 ≥ 𝑚 and 𝑟𝑎𝑛𝑘 𝐀 = 𝑚. If we set (𝑛 − 𝑚) variables to zero and

from 𝐀𝐱 = 𝐛 we can find a unique solution for the remaining m variables then

• The (𝑛 −𝑚) variables that are set to zero are called nonbasic variables
• The m variables that have a unique solution are called basic variables and 

their solution is referred to as a basic solution

Note:  A basic solution is an extreme point of the feasible region

In matrix form: denote 𝐀𝑗 - the jth column vector of A, we have

𝐀𝐱 = 𝐛 ⇔ σ𝑗=1
𝑛 𝐀𝑗𝑥𝑗 = 𝐛



Background Concepts

The subset of m column vectors associated with the m basic variables will 

form a basis B, and the corresponding basic solution  can be found by 

solving

𝐁𝐱𝐁 = 𝐛 ⇒ 𝐱𝐁 = 𝐁−1𝐛

It is noted that 

• The columns 𝐀𝑗′s that form basis matrix B should be linearly independent.

• B is a nonsingular matrix, i.e.,  det(𝐁) ≠ 0

Review:  The vectors 𝐏1, 𝐏2,…, 𝐏𝑛 are linearly independent iff

σ𝑗=1
𝑛 𝛼𝑗𝐏𝑗 = 0 ⇒ 𝛼𝑗 = 0 ∀𝑗 = 1,2,… , 𝑛



Simplex Method

Simplex tableau

Consider the following LP and its equivalent standard form

 Min 1 22x x− −     Min Z 

s.t      s.t   1 22 0Z x x+ + =  

  

1 2

1 2

1

1 2

8
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2 3

, 0

x x

x x

x

x x

+ 

+ 


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      
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8
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+ + =
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

 



Simplex Method

The initial simplex tableau:

 

 Z 1x  2x  3x  4x  5x  RHS 

Z 1 2 1 0 0 0 0 

3x  0 1 8/3 1 0 0 4 

4x  0 1 1 0 1 0 2 

5x  0 2 0 0 0 1 3 

 



Simplex Method

Notes:  

• The variables associated with unit column vectors in the simplex tableau are current
basic variables. The others are nonbasic variables.

• Initial feasible solution:  𝑥1 = 𝑥2 = 0; 𝑥3 = 4; 𝑥4 = 2; 𝑥5 = 3

• Column vectors in matrix A associated with basic variables will form a basis matrix B.  
The basis B in a simplex tableau is an identity matrix 

81 1 0 0
3

= 1 1 0 1 0

2 0 0 0 1

 
 
 
 
  

A

3 4 5

1 0 0
=

0 1 0

0 0 1

x x x

 
 
 
  

B



Simplex Method

In general, a simplex tableau has the following form:
 

 Z 
1x  

2x  … 
mx  

1Bx  … 
jBx  … 

rBx  RHS 

Z 1 
01y  02y  … 

0my  0 … 0 … 0 
00y  

1Bx  0 
11y  12y  … 

1my  1 … 0 … 0 
10y  

… … … … … … … … … … … … 

iBx  0 
1iy  2iy  … 

imy  0 … 1 … 0 
0iy  

… … … … … … … … … … … … 

rBx  0 
1ry  2ry  … 

rmy  0 … 0 … 1 
0ry  

 



Simplex Method

Simplex Algorithm

Assume that 𝑦𝑖0 ≥ 0 ∀𝑖 ∈ [1, 𝑟], at each iteration (called a pivot) of the simplex algorithm, the 

following steps will be performed

Step 1: select j such that 𝑦𝑜𝑗 = 𝑚𝑎𝑥1≤𝑘≤𝑚{𝑦𝑜𝑘} - select the pivot column

• If 𝑦𝑜𝑗 ≤ 0: stop.  The current basic feasible solution is optimal.  

• If 𝑦𝑜𝑗 > 0 , go to step 2.

Step 2: for the value of j selected in step 1 

• If 𝑦𝑖𝑗 ≤ 0 ∀𝑖 : stop; the LP problem is unbounded.  

• Otherwise, select i such that – select the pivot row

𝑦𝑖0

𝑦𝑖𝑗
= 𝑀𝑖𝑛

𝑦𝑘0

𝑦𝑘𝑗
𝑦𝑘𝑗 > 0 and go to step 3.



Simplex Method

Step 3: Pivoting at 𝑦𝑖𝑗 (pivot term, pivot number) by use of elementary row operations as

below and then go back to step 1,

Row i ⇒
𝟏

𝒚𝒊𝒋
*(Row i)

Row k ⇒ Row k -
𝒚𝒌𝒋

𝒚𝒊𝒋
*(Row i) ∀𝒌 ≠ 𝒊

The purpose of step 3 is to replace the variable associated with row i (leaving variable) by

the variable associated with column j (entering variable) in the current basis B in order to

move from the current basic feasible solution to one of its adjacent basic feasible solutions

.



Simplex Method

Example 7:

1. Min 1 22x x− −     Min Z 

s.t      s.t   1 22 0Z x x+ + =  

  

1 2

1 2

1

1 2

8
4

3

2

2 3

, 0

x x

x x

x

x x

+ 

+ 





    

1 2 3

1 2 4

1 5

1 2 3 4 5

8
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3

2

2 3

, , , , 0

x x x

x x x

x x

x x x x x

+ + =

+ + =

+ =



 



Simplex Method

The initial simplex tableau:

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 2 1 0 0 0 0 

3x  0 1 8/3 1 0 0 4 

4x  0 1 1 0 1 0 2 

5x  0 2* 0 0 0 1 3 

 



Simplex Method

Step 1:

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 1 0 0 -1 -3 

3x  0 0 8/3 1 0 -1/2 5/2 

4x  0 0 1* 0 1 -1/2 1/2 

1x  0 1 0 0 0 1/2 3/2 

 



Simplex Method

Step 2:

Optimal solution:  𝑥1
∗ = Τ3 2, 𝑥2

∗ = Τ1 2, 𝑍
∗ = − Τ7 2

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 0 0 -1 -1/2 -7/2 

3x  0 0 0 1 -8/3 5/6 7/6 

2x  0 0 1 0 1 -1/2 1/2 

1x  0 1 0 0 0 1/2 3/2 

 



Simplex Method

Notes:

• A constraint is binding if its LHS and RHS are equal at the
optimal solution. Otherwise, the constraint is nonbinding.

In the above example, constraint 1 is nonbinding while
constraints 2&3 are binding



Simplex Method

2. Min 1 22x x− +     Min Z 

s.t      s.t  1 22 0Z x x+ − =  

  

1 2

1 2

1 2

2

3 3

, 0

x x

x x

x x

− + 

− 



     

1 2 3

1 2 4

1 2 3 4

2

3 3

, , , 0

x x x

x x x

x x x x

− + + =

− + =



 



Simplex Method

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 2 -1 0 0 0 

3x  0 -1 1 1 0 2 

4x  0 1* -3 0 1 3 

 



Simplex Method

Step 1:

The problem is unbounded! Reason:

𝑍 = −6 − 5𝑥2 + 2𝑥4
𝑥3 = 5 + 2𝑥2 − 𝑥4 ⇒ Z can approach −∞

𝑥1 = 3 + 3𝑥2 − 𝑥4

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 0 5 0 -2 -6 

3x  0 0 -2 1 1 5 

1x  0 1 -3 0 1 3 

 



Determine Initial Basic Solution

In some LP problems, after adding slack variables we still do not
have an identity matrix to serve as an initial basis matrix (ill-
behaved LPs). In these cases, an artificial starting solution
should be determined so that the simplex algorithm can be
applied.

There are two methods: The two-phase method

The BigM method



The Two-Phase Method

Phase 1: Introduce artificial variables in appropriate constraints of the LP

problem so that an identity basis B can be formed. The objective function

of phase 1 is to minimize the sum W of all artificial variables. Use simplex

method for solution

There are three possibilities:

a. Case 1:  If 𝑊∗ exists but 𝑊∗ > 0 ⇒ The original LP is infeasible.

b. Case 2: If 𝑊∗ = 0 and there is no artificial variable in the basis matrix.

Remove all artificial variables from the current simplex tableau. Use this as

the initial simplex tableau for the original LP, go to phase 2



The Two-Phase Method

c. Case 3: If 𝑊∗ = 0 and there are artificial variables in the basis
matrix then:

• Remove the rows that have all elements associated with
nonartificial variables to be zero.

• Pivot at some element (>0) in the current simplex tableau to take
artificial variables out of the basis; remove all artificial variables from
the current simplex tableau; use this as the initial simplex tableau
for the original LP, and go to phase 2

Phase 2: Consider the original objective function and use simplex
algorithm to find optimal solution.



The Two-Phase Method

Example 8:

1. Min 1 23 4x x− +     Min 1 23 4x x− +  

s.t      s.t    

  

1 2

1 2

1 2

4

2 3 18

, 0

x x

x x

x x

+ 

+ 



      

1 2 3

1 2 4

1 2 3 4

4

2 3 18

, , , 0

x x x

x x x

x x x x

+ + =

+ − =



 



The Two-Phase Method

Phase 1:    Min 𝑊 = 𝑥5
s.t. 1 2 3

1 2 4 5

1 2 3 4 5

4

2 3 18

, , , , 0

x x x

x x x x

x x x x x

+ + =

+ − + =



 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 0 0 0 0 -1* 0 

3x  0 1 1 1 0 0 4 

5x  0 2 3 0 -1 1 18 

 

This table is not a simplex tableau
because the coefficients associated with
the basic variables in row 0 are not
zeros! So, Row operation should be
conducted on row 0 to form the starting
simplex tableau as follows



The Two-Phase Method

Starting Simplex Tableau:

 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 2 3 0 -1 0 18 

3x  0 1 1* 1 0 0 4 

5x  0 2 3 0 -1 1 18 

 



The Two-Phase Method

Iteration 1: Pivot term: 1*; 𝑥2 -entering variable; 𝑥3 -leaving variable.

Optimal solution has been found.  However, 𝑊∗ = 6 ≠ 0.  The original 
LP is infeasible.

 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 -1 0 -3 -1 0 6 

2x  0 1 1 1 0 0 4 

5x  0 -1 0 -3 -1 1 6 

 



The Two-Phase Method

2. Min 1 2 34x x x+ +      

s.t        

  

1 2 3

1 2 3

1 2 3

2 2 4

3 3 3

, , 0

x x x

x x x

x x x

+ + =

+ + =



 



The Two-Phase Method

Phase 1: Min 𝑊 = 𝑥4 + 𝑥5
s.t.

1 2 3 4

1 2 3 5

1 2 3 4 5

2 2 4

3 3 3

, , , , 0

x x x x

x x x x

x x x x x

+ + + =

+ + + =



 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 0 0 0 -1 -1 0 

4x  0 2 1 2 1 0 4 

5x  0 3 3 1 0 1 3 

 



The Two-Phase Method

Starting Simplex Tableau:

 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 5 4 3 0 0 7 

4x  0 2 1 2 1 0 4 

5x  0 3* 3 1 0 1 3 

 



The Two-Phase Method

Iteration 1: Pivot term: 3*; 𝑥1 -entering variable; 𝑥5 -leaving variable.

 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 0 -1 4/3 0 -5/3 2 

4x  0 0 -1 4/3* 1 -2/3 2 

1x  0 1 1 1/3 0 1/3 1 

 



The Two-Phase Method

Iteration 2: Pivot term: 4/3*; 𝑥3 -entering variable; 𝑥4 -leaving variable.

 W 
1x  

2x  
3x  

4x  
5x  RHS 

W 1 0 0 0 -1 -1 0 

3x  0 0 -3/4 1 3/4 -1/2 3/2 

1x  0 1 5/4 0 -1/4 1/2 1/2 

 



The Two-Phase Method

Phase 2:

⇒ Starting simplex tableau of phase 2:

 Z 
1x  

2x  
3x  RHS 

Z 1 -4 -1 -1 0 

3x  0 0 -3/4 1 3/2 

1x  0 1 5/4 0 ½ 

 

 Z 
1x  

2x  
3x  RHS 

Z 1 0 13/4 0 7/2 

3x  0 0 -3/4 1 3/2 

1x  0 1 5/4* 0 1/2 

 

1x2x3x3x1x



The Two-Phase Method

Iteration 1: Pivot term: 5/4*; 𝑥2 -entering variable; 𝑥1 -leaving variable.

Optimal solution has been founded!

 Z 
1x  

2x  
3x  RHS 

Z 1 -13/5 0 0 11/5 

3x  0 3/5 0 1 9/5 

2x  0 4/5 1 0 2/5 

 



The Two-Phase Method

3. Min 1 2 32 3x x x− + −      

s.t        

  

1 2 3

1 2 3

2 3

3 4

1 2 3 4

6

2 4

2 3 10

2

, , , 0

x x x

x x x

x x

x x

x x x x

+ + =

− + + =

+ =

+ =



   



The Two-Phase Method

Phase 1: Min 𝑊 = 𝑥5 + 𝑥6 + 𝑥7
s.t.

1 2 3 5

1 2 3 6

2 3 7

3 4

1 2 3 4 5 6 7

6

2 4

2 3 10

2

, , , , , , 0

x x x x

x x x x

x x x

x x

x x x x x x x

+ + + =

− + + + =

+ + =

+ =





The Two-Phase Method

Starting simplex tableau:

 W 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

W 1 0 4 6 0 0 0 0 20 

5x  0 1 1 1 0 1 0 0 6 

6x  0 -1 1 2* 0 0 1 0 4 

7x  0 0 2 3 0 0 0 1 10 

4x  0 0 0 1* 1 0 0 0 2 

 



The Two-Phase Method

Iteration 1:  Pivot term:  1* (or 2*)

 W 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

W 1 0 4 0 -6 0 0 0 8 

5x  0 1 1 0 -1 1 0 0 4 

6x  0 -1 1* 0 -2 0 1 0 0 

7x  0 0 2 0 -3 0 0 1 4 

3x  0 0 0 1 1 0 0 0 2 

 



The Two-Phase Method

Iteration 2:  Pivot term:  1* 

 W 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

W 1 4 0 0 2 0 -4 0 8 

5x  0 2* 0 0 1 1 -1 0 4 

2x  0 -1 1 0 -2 0 1 0 0 

7x  0 2 0 0 1 0 -2 1 4 

3x  0 0 0 1 1 0 0 0 2 

 



The Two-Phase Method

Iteration 3:  Pivot term:  2* 

In the final simplex tableau of phase 1 of this problem, the row
associated with 𝑥7 is redundant and should be removed

 W 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

W 1 0 0 0 0 -2 -2 0 0 

1x  0 1 0 0 1/2 1/2 -1/2 0 2 

2x  0 0 1 0 -3/2 1/2 1/2 0 2 

7x  0 0 0 0 0 -1 -1 1 0 

3x  0 0 0 1 1 0 0 0 2 

 



The Two-Phase Method

Phase 2: The starting simplex tableau is developed as follows:

Optimal solution found!

 Z 
1x  

2x  
3x  

4x  RHS    Z 
1x  

2x  
3x  

4x  RHS 

Z 1 1 -2 3 0 0   Z 1 0 0 0 -13/2 -4 

1x  0 1 0 0 1/2 2  1x  0 1 0 0 1/2 2 

2x  0 0 1 0 -3/2 2   
2x  0 0 1 0 -3/2 2 

3x  0 0 0 1 1 2   
3x  0 0 0 1 1 2 

 

1x2x3x4x1x2x3x4x1x1x2x2x3x3x



The BigM Method

Procedure

• Introduce artificial variables into constraints so as an initial
basic solution can be defined.

• For each artificial variable 𝑦𝑖, add an amount 𝑀𝑦𝑖 (M: a very
large positive value) to the objective function (the case of
minimization problem)

• Use simplex method for solution.



The BigM Method

Example 9:

1. Min 1 23 4x x− +     Min 1 23 4x x− +  

s.t      s.t    

  

1 2

1 2

1 2

4

2 3 18

, 0

x x

x x

x x

+ 

+ 



      

1 2 3

1 2 4

1 2 3 4

4

2 3 18

, , , 0

x x x

x x x

x x x x

+ + =

+ − =



 

        



The BigM Method

Min 1 2 53 4x x Mx− + +  

  s.t 

    

1 2 3

1 2 4 5

1 2 3 4 5

4

2 3 18

, , , , 0

x x x

x x x x

x x x x x

+ + =

+ − + =



 

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 3 -4 0 0 -M 0 

3x  0 1 1 1 0 0 4 

5x  0 2 3 0 -1 1 18 

 

1x2x3x4x5x3x5x



The BigM Method

Starting simplex tableau:

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 3+2M -4+3M 0 -M 0 18M 

3x  0 1 1* 1 0 0 4 

5x  0 2 3 0 -1 1 18 

 



The BigM Method

Note: Another type of simplex tableau for BigM method:

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 3 

2 

-4 

3 

0 

0 

0 

-1 

0 

0 

0 

18 

3x  0 1 1* 1 0 0 4 

5x  0 2 3 0 -1 1 18 

 



The BigM Method

Iteration 1: Pivot term: 1*; 𝑥2 -entering variable; 𝑥3 -leaving variable.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 7-M 0 4-3M -M 0 16+6M 

2x  0 1 1 1 0 0 4 

5x  0 -1 0 -3 -1 1 6 

 

1x2x3x4x5x2x5x



The BigM Method

Or

The simplex tableau is optimal.  But the artificial variable 𝑥5 > 0
⇒ The original LP is infeasible.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 7 

-1 

0 

0 

4 

-3 

0 

-1 

0 

0 

16 

6 

2x  0 1 1 1 0 0 4 

5x  0 -1 0 -3 -1 1 6 

 



The BigM Method

2 Min 1 2 34x x x+ +      

s.t        

  

1 2 3

1 2 3

1 2 3

2 2 4

3 3 3

, , 0

x x x

x x x

x x x

+ + =

+ + =



  

 Min 1 2 3 4 54x x x Mx Mx+ + + +  

 s.t. 

  

1 2 3 4

1 2 3 5

1 2 3 4 5

2 2 4

3 3 3

, , , , 0

x x x x

x x x x

x x x x x

+ + + =

+ + + =



 



The BigM Method

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 -4 -1 -1 -M -M 0 

4x  0 2 1 2 1 0 4 

5x  0 3 3 1 0 1 3 

 Starting simplex tableau:

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 -4+5M -1+4M -1+3M 0 0 7M 

4x  0 2 1 2 1 0 4 

5x  0 3* 3 1 0 1 3 

 



The BigM Method

Iteration 1: Pivot term: 3*; 𝑥1 -entering variable; 𝑥5 -leaving variable.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 3-M 1/3+4M/3 0 4/3-5M/3 4+2M 

4x  0 0 -1 4/3* 1 -2/3 2 

1x  0 1 1 1/3 0 1/3 1 

 



The BigM Method

Iteration 2: Pivot term: 4/3*; 𝑥3 -entering variable; 𝑥4 -leaving variable.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 13/4 0 -1/4-M 3/2-M 7/2 

3x  0 0 -3/4 1 3/4 -1/2 3/2 

1x  0 1 5/4* 0 -1/4 1/2 1/2 

 



The BigM Method

Iteration 3: Pivot term: 5/4*; 𝑥2 -entering variable; 𝑥1 -leaving variable.

Optimal Solution: 𝑥1
∗ = 0, 𝑥2

∗ = Τ2 5 , 𝑥3
∗ = Τ9 5 , with Z* = 11/5.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 -13/5 0 0 2/5-M 1/5-M 11/5 

3x  0 3/5 0 1 9/10 -1/5 9/5 

2x  0 4/5 1 0 -1/5 2/5 2/5 

 

1x2x3x4x5x3x2x



The BigM Method

3. Min 1 2 32 3x x x− + −      

s.t        

  

1 2 3

1 2 3

2 3

3 4

1 2 3 4

6

2 4

2 3 10

2

, , , 0

x x x

x x x

x x

x x

x x x x

+ + =

− + + =

+ =

+ =



 

 Min 1 2 3 5 6 72 3x x x Mx Mx Mx− + − + + +     

 s.t. 

  

1 2 3 5

1 2 3 6

2 3 7

3 4

1 2 3 4 5 6 7

6

2 4

2 3 10

2

, , , , , , 0

x x x x

x x x x

x x x

x x

x x x x x x x

+ + + =

− + + + =

+ + =

+ =



 



The BigM Method

 Z 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

Z 1 1 -2 3 0 -M -M -M 0 

5x  0 1 1 1 0 1 0 0 6 

6x  0 -1 1 2 0 0 1 0 4 

7x  0 0 2 3 0 0 0 1 10 

4x  0 0 0 1* 1 0 0 0 2 

 



The BigM Method

Starting simplex tableau:

 Z 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

Z 1 1 -2+4M 3+6M 0 0 0 0 20M 

5x  0 1 1 1 0 1 0 0 6 

6x  0 -1 1 2* 0 0 1 0 4 

7x  0 0 2 3 0 0 0 1 10 

4x  0 0 0 1* 1 0 0 0 2 

 



The BigM Method

Iteration 1: Pivot term: 1* (or 2*)

 Z 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

Z 1 1 -2+4M 0 -3-6M 0 0 0 -6+8M 

5x  0 1 1 0 -1 1 0 0 4 

6x  0 -1 1* 0 -2 0 1 0 0 

7x  0 0 2 0 -3 0 0 1 4 

3x  0 0 0 1 1 0 0 0 2 

 



The BigM Method

Iteration 2: Pivot term: 1* 

 Z 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

Z 1 -1+4M 0 0 -7+2M 0 2-4M 0 -6+8M 

5x  0 2* 0 0 1 1 -1 0 4 

2x  0 -1 1 0 -2 0 1 0 0 

7x  0 2 0 0 1 0 -2 1 4 

3x  0 0 0 1 1 0 0 0 2 

 



The BigM Method

Iteration 3: Pivot term: 2*

 Z 
1x  

2x  
3x  

4x  
5x  

6x  
7x  RHS 

Z 1 0 0 0 -13/2 1/2-2M 3/2-2M 0 -4 

1x  0 1 0 0 1/2 1/2 -1/2 0 2 

2x  0 0 1 0 -3/2 1/2 1/2 0 2 

7x  0 0 0 0 0 -1 -1 1 0 

3x  0 0 0 1 1 0 0 0 2 

 



The BigM Method

Optimal Solution: 𝑥1
∗ = 2, 𝑥2

∗ = 2, 𝑥3
∗ = 2, with Z* = -4.

Note that the information 𝑥7 =0 in the final simplex tableau is
redundant (This must be satisfied!)



Special Case in Simplex Method Application

There are four special cases:

• Degeneracy

• Alternative optima

• Unbounded solutions

• Infeasible solutions



Special Case in Simplex Method Application
Degeneracy

When the model has at least one redundant constraint, a tie
may occur when checking feasibility condition (Step 2) in the
application of simplex method.

The tie can be broken arbitrarily and this will lead to the fact that 
at least one basic variable will be zero in the next iteration.  This 
new solution is said to be degenerate



Special Case in Simplex Method Application
Degeneracy

Example 10:

Min 1 23 9z x x= − −      

s.t        

    

1 2

1 2

1 2

4 8

2 4

, 0

x x

x x

x x

+ 

+ 



 



Special Case in Simplex Method Application
Degeneracy

Starting simplex tableau:

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 3 9 0 0 0 

3x  0 1 4* 1 0 8 

4x  0 1 2* 0 1 4 

 



Special Case in Simplex Method Application
Degeneracy

If 𝑥2 enters and 𝑥3 leaves the basic solution, then

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 3/4 0 -9/4 0 -18 

2x  0 1/4 1 1/4 0 2 

4x  0 1/2 0 -1/2 1 0 

 

1x2x3x4x2x4x



Special Case in Simplex Method Application
Degeneracy

Next 𝑥1 enters and 𝑥4 leaves the basic solution, then

Optimal solution! (but the value of objective function does not 
change)

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 0 0 -3/2 -3/2 -18 

2x  0 0 1 1/2 -1/2 2 

1x  0 1 0 -1 2 0 

 

1x2x3x4x2x4x



Special Case in Simplex Method Application
Alternative Optima

When the objective function is parallel to a binding constraint,
the objective function will assume the same optimal value, called
alternative optima, at more than one solution point. In this
situation, there is an infinity of such solutions



Special Case in Simplex Method Application
Alternative Optima

Example 11:

Min 1 22 4z x x= − −      

s.t        

    

1 2

1 2

1 2

2 5

4

, 0

x x

x x

x x

+ 

+ 



 



Special Case in Simplex Method Application
Alternative Optima

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 2 4 0 0 0 

3x  0 1 2* 1 0 5 

4x  0 1 1 0 1 4 

 

 Z 
1x  2x  3x  4x  RHS 

Z 1 0 0 -2 0 10 

2x  0 1/2 1 1/2 0 5/2 

4x  0 1/2 0 -1/2 1 3/2 

 



Special Case in Simplex Method Application
Alternative Optima

The optimal solution is reached. However, it is noted that the
coefficient associated with nonbasic variable 𝑥1 on row 0 is zero.
Hence, 𝑥1 can enter the basic solution without changing the optimal
value of z.

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 0 0 -2 0 10 

2x  0 0 1 1 -1 1 

1x  0 1 0 -1 2 3 

 

1x2x3x4x2x1x



Special Case in Simplex Method Application
Alternative Optima

Actually, any points in the segment connecting the two points

𝑥1
1, 𝑥2

1 = (0,
5

2
) and 𝑥1

2, 𝑥2
2 = (3,1) will give the same objective

value.

Optimal solutions:

( ) ( ) ( )( )

( )  

1 2
5, *0 1 *3, * 1 *1

2

33 3 ,1 0,1
2

x x    

 

= + − + −

= − +  



Special Case in Simplex Method Application
Unbounded Solution

When an LP model is poorly constructed (lack of some
necessary constraints), the objective value may increase (in
case of maximization) or decrease (in case of minimization)
indefinitely



Special Case in Simplex Method Application
Unbounded Solution

Example 12:

Min 1 22z x x= − −      

s.t        

    

1 2

1

1 2

10

2 40

, 0

x x

x

x x

− 





 



Special Case in Simplex Method Application
Unbounded Solution

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 2 1 0 0 0 

3x  0 1* -1 1 0 10 

4x  0 2 0 0 1 40 

 

 Z 
1x  2x  3x  4x  RHS 

Z 1 0 3 -2 0 -20 

1x  0 1 -1 1 0 10 

4x  0 0 2* -2 1 20 

 



Special Case in Simplex Method Application
Unbounded Solution

In the last simplex tableau: 𝑍 = −50 − 𝑥3 + Τ3 2 𝑥4

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 0 0 1 -3/2 -50 

1x  0 1 0 0 1/2 20 

2x  0 0 1 -1 1/2 10 

 



Special Case in Simplex Method Application
Unbounded Solution

• For z to be minimized, 𝑥4 should be zero. However, 𝑥3 can
increase indefinitely. In this case, the solution space is unbounded
in the direction of 𝑥3 and so the objective value.

• It is noted that, from the initial simplex tableau, we can see that all
the constraint coefficients of 𝑥2 are negative or zero. Therefore, 𝑥2
can be increased indefinitely without violating any of the constraints
and this will result in an infinite increase in z. In this case, the
solution space is unbounded in the direction of 𝑥3 and so the
objective value.



Special Case in Simplex Method Application
Unbounded Solution

How to recognize unboundedness? If at any iteration:

• All constraint coefficients of any nonbasic variable are zero or
negative (unbounded solution space)

• The corresponding objective coefficient of that variable is also
positive (unbounded objective value)



Special Case in Simplex Method Application
Infeasible Solution

This is the case of LP models with inconsistent constraints
(incorrectly formulated LPs)

See Example 8.1 or 9.1 discussed before for an illustration.



Revised Simplex Method

Weaknesses of (Primal) Simple Method:

1. The initial basic solution comes only from the slack variables.
So, it we don’t have enough slack variables, some artificial
variables should be introduced and then two-phase or BigM
method should be applied. The increase in total number of
variables will require more computational effort.

2. It is not flexible. We cannot select an arbitrary combination
of variables to serve as a basic solution at the beginning.
This flexibility is sometimes quite important if we already
knew a near-optimal solution.



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

Consider the LP: Minimize z = 𝐜T𝐱

s.t. 𝐀𝐱 = 𝐛 ≥ 𝟎

𝐱 ≥ 𝟎

The problem can be written equivalently as: 1 −𝐜T

0 𝐀

𝑧
𝐱

=
0
𝐛

Suppose B is a feasible basis of the system 𝐀𝐱 = 𝐛 ≥ 𝟎, 𝐱 ≥ 𝟎 ;

Denote 𝐱𝐁 : basic vector - the corresponding set of basic variables

𝐜𝐁 : the associated objective vector



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

The corresponding feasible basic solution as well as the associated objective
value can be determined as:

The general simplex tableau can be derived based on the following equation:

Or equivalently,

1
T T 1 T 1

1 1

0 01 1

0 0

B B B

B

z
−

− −

− −

       −    
= = =          

          

c c B c B b

x b bB B B b

T 1 T T 1

1 1

01 1 1

0 0 0

B B
z− −

− −

    −    
=       

       

c B c c B

x bB A B

T 1 T T 1

1 1

1

0

B B
z− −

− −

   −  
=    

    

c B A c c B b

xB A B b



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

Simplex tableau in matrix form:

 z x  RHS 

z 1 T 1 T

B

− −c B A c  T 1

B

−
c B b  

Bx  0  1−
B A  

1−
B b  

 



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

In details, the simplex tableau column associated with variable
𝑥𝑗 can be represented as follows:

Note that if 𝑥𝑗 is a basic variable then: 𝐜𝐵
𝑇𝐁−1𝐀𝑗 − 𝑐𝑗 = 0

 z 
jx  RHS 

z 1 T 1

B j jc− −c B A  T 1

B

−
c B b  

Bx  0  1

j

−
B A  1−

B b  

 



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

Example 13:

Min 1 2 3 44 7 5x x x x− − − −     

   s.t. 

   

1 2 3 4

1 2 3 4

1 2 3 4

2 2 4 10

3 2 6 5

, , , 0

x x x x

x x x x

x x x x

+ + + =

− − + =



 



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

Consider the simplex tableau associated with the basis 𝐁 =
𝐀1, 𝐀2

We have:

Hence,

1 1

2

1 1
1 2 1 5 5

; ;
34 3 1 2

5 5

B B

x

x

−

 
−       = =        − −     −

 

x c B = B =

1 1

2

1 1
10 35 5

3 5 42
5 5

B

x

x

−

 
      = = = =            −

 

x B b



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

1

1 1
2 1 2 4 1 0 0 25 5

3 3 1 2 6 0 1 2 02
5 5

−

 
    = =     − −   −

 

B A

   

 

T 1 T
1 0 0 2

1 4 1 4 7 5
0 1 2 0

0 0 1 3

B

−  
− = − − − − − − − 

 

= −

c B A c

 T 1
3

1 4 19
4

Bz −  
= = − − = − 

 
c B b



Revised Simplex Method
SIMPLEX TABLE IN MATRIX FORM

The corresponding simplex tableau (without introducing any
artificial variable !):

 Z 
1x  

2x  
3x  

4x  RHS 

Z 1 0 0 -1 3 -19 

1x  0 1 0 0 2 3 

2x  0 0 1 2 0 4 

 

1x2x3x4x1x2x



Revised Simplex Method
OPTIMALITY CONDITION

Consider a general LP: Minimize z = 𝐜T𝐱

s.t. 𝐀𝐱 = 𝐛 ≥ 𝟎

𝐱 ≥ 𝟎

Row 0 of any simplex iterative can be represented by the
following equation:

In which

( ) T 1

1

n

j j j B

j

z z c x −

=

+ − = c B b

T 1

j j B j jz c c−− = −c B A



Revised Simplex Method
OPTIMALITY CONDITION

In the above equation, it is noted that

• If 𝑥𝑗 is a basic variable then 𝑧𝑗 − 𝑐𝑗 = 0

• If 𝑥𝑗 is a nonbasic variable, an increase in 𝑥𝑗 above its current

zero value will improve the value of z only if 𝑧𝑗 − 𝑐𝑗 > 0.

Hence, optimal solution is achieved when: 𝑧𝑗 − 𝑐𝑗 ≤ 0 ∀𝑗 =
1,2,… , 𝑛



Revised Simplex Method
OPTIMALITY CONDITION

• When optimal condition is still not satisfied, any nonbasic
variable satisfying 𝑧𝑗 − 𝑐𝑗 > 0 can be selected as entering
variable to improve the current solution.

• The rule of thumb used in simplex method is to select the one
with the most positive value of 𝑧𝑗 − 𝑐𝑗 (in case of
minimization).



Revised Simplex Method
FEASIBILITY CONDITION

Row i of any simplex iteration can be represented by:

in which 𝐁−1𝐀𝑗 𝑖
, 𝐁−1𝐛 𝑖 are the elements of 𝐁−1𝐀𝑗, 𝐁

−1𝐛 associated with row i.

When an 𝐀𝑗 is selected to enter the basis, its associated nonbasic variable 𝑥𝑗 will

increase above zero level. At the same time, all other nonbasic variables remain

at zero level. Therefore,

( ) ( )1 1

, 1

n

i j ji i
j i j

x x− −

 =

+ = B A B b

( ) ( )1 1

i j ji i
x x− −= −B b B A



Revised Simplex Method
FEASIBILITY CONDITION

If 𝐁−1𝐀𝑗 𝑖
> 0, the increase in 𝑥𝑗 should satisfy the following condition to ensure

that 𝑥𝑖 ≥ 0.

The maximum value of the entering variable is, hence, determined by:

The basic variable associated with the minimum ratio will then leave the basic
solution

( )
( )

1

1

i
j

j i

x

−

−


B b

B A

( )
( )

( )
1

1

1
min 0i

j j ii
j i

x

−

−

−

 
 

=  
  

B b
B A

B A



Revised Simplex Method

The revised simplex method is exactly the same as the tableau
simplex method. The main difference is that it is based on
matrix algebra while the tableau simplex method employs
elementary row operations

Procedure:

1. Construct a starting basic feasible solution and its associated
basis B

2. Compute the inverse 𝐁−1by using an appropriate inversion
method



Revised Simplex Method

3. For each nonbasic variable 𝑥𝑗 , compute

If 𝑧𝑗 − 𝑐𝑗 ≤ 0 for all nonbasic variables, stop; the optimal
solution is given by

Else, select the entering variable 𝑥𝑗 as the nonbasic variable
with the most positive 𝑧𝑗 − 𝑐𝑗

T 1

j j B j jz c c−− = −c B A

1 T 1 T;B B B Bz− −= = =x B b c B b c x



Revised Simplex Method

4. Compute 𝐁−1𝐀𝑗

If all elements of 𝐁−1𝐀𝑗 are negative or zero, stop; the problem is
unbounded

Else, compute 𝐁−1𝐛 and use the feasibility condition to determine the
leaving variable among the current basic variables.

5. Form a new basis by replacing the leaving vector by the entering
vector in the current basis B. Start a new iteration



Revised Simplex Method

Example 14:

Min 1 25 4x x− −     

   s.t. 

   

1 2 3

1 2 4

1 2 5

2 6

1 2 3 4 5 6

6 4 24

2 6

1

2

, , , , , 0

x x x

x x x

x x x

x x

x x x x x x

+ + =

+ + =

− + + =

+ =



 



Revised Simplex Method

Iteration 0:

Thus:

Check for optimality:

⇒ 𝑥1 is the entering variable

   
0 0

T

3 4 5 6 0 0 0 0
T

B Bx x x x= =x c

 0 3 4 5 6= =B A A A A I
1

0

− =B I

 
0

T1

0 24 6 1 2B

−= =x B b

0 0

T 0B Bz = =c x

 
0

T 1

0 0 0 0 0B

− =c B

( )      T 1

0 1 2 1 21,2
5 4j j Bj

z c c c−

=
− = − =c B A A



Revised Simplex Method

Check feasibility condition:

Hence,

⇒ 𝑥3 is the leaving variable

 
0

T1

0 24 6 1 2B

−= =x B b

 
T1

0 1 6 1 1 0− = −B A

 1

24 6
min , , , min 4,6, , 4

6 1
x

 
= − − = − − = 

 



Revised Simplex Method

Iteration 1:

Thus

   
1 1

T

1 4 5 6 5 0 0 0
T

B Bx x x x= =x c

 1 1 4 5 6

6 0 0 0

1 1 0 0

1 0 1 0

0 0 0 1

 
 
 = =
− 
 
 

B A A A A 1

1

1 0 0 0
6

1 1 0 0
6

1 0 1 0
6

0 0 0 1

−

 
 
 −
 =
 
 
  

B

 
1

T1

1 4 2 5 2B

−= =x B b

1 1

T 20B Bz = = −c x



Revised Simplex Method

Check for optimality:

⇒ 𝑥2 is the entering variable

Check feasibility condition:

Hence,

⇒ 𝑥4 is the leaving variable

1

T 1

1
5 0 0 0

6B

−  = −
 

c B

( )    T 1

1 2 3 2 32,3

52
3 6j j Bj

z c c c−

=

 − = − = −
 

c B A A

 
1

T1

1 4 2 5 2B

−= =x B b

T

1

1 2

2 4 5
1

3 3 3

−  
=  
 

B A

2

3 3
min 6, ,3,2

2 2
x

 
= = 

 



Revised Simplex Method

Iteration 2:

Thus

   
2 2

T

1 2 5 6 5 4 0 0
T

B Bx x x x= =x c

 2 1 2 5 6

6 4 0 0

1 2 0 0

1 1 1 0

0 1 0 1

 
 
 = =
− 
 
 

B A A A A
1

2

1 1 0 0
4 2

31 0 0
8 4

3 5 1 0
8 4

31 0 1
8 4

−

 −
 
 −
 =
 −
 
 

−  

B

2

T
1

2
3 5 13

2 2 2B

−  = =
 

x B b

2 2

T 21B Bz = = −c x



Revised Simplex Method

Check for optimality:

⇒ 𝐱𝐵2 is optimal. Optimal solution: 𝑥1 = 2, 𝑥2 = 1.5, 𝑧 = −21

Note: Methods of determining the inverse of matrix: Adjoint Matrix Method,
Gauss-Jordan Method, Use of Product Form of the Inverse (see textbook of
Taha), LU Decomposition.

2

T 1

2
3 1 0 0

4 2B

−  =
 

c B

( )    T 1

2 3 3 3 43,4

3 1
4 2j j Bj

z c c c−

=

 − = − = − −
 

c B A A



The Dual of a Linear Program

Example 15: Consider the diet problem which is considered by
a dieter

Choose a diet from a set of n available foods in order to
guarantee m nutritional requirements while minimizing cost

• Daily required number of units of nutrient i: 𝑏𝑖 (𝑖 = 1,2,… ,𝑚)
• Number of units of nutrient i in one unit of food j (𝑗 = 1,2,… , 𝑛): 𝑎𝑖𝑗
• Cost per unit of food j : 𝑐𝑗 (𝑗 = 1,2,… , 𝑛)

• Number of units of food j in the diet: 𝑥𝑗 (𝑗 = 1,2,… , 𝑛)



The Dual of a Linear Program

The Primal Problem:

(P): Min Z =
1

n

j j

j

c x
=

  

s.t. 
1

n

ij j i

j

a x b
=

  1,2,...,i m =  

     0jx    1,2,...,j n =  



The Dual of a Linear Program

Consider a druggist who sells m types of pill in which pill i
contains one unit of nutrient i (𝑖 = 1,2,… ,𝑚) . In order to
convince the dieter to use his pills to supply the daily nutrient
requirement, instead of using various foods, the prices of the
pills 𝑢1, 𝑢2,…, 𝑢𝑚 should be attractive in such a way that the
cost of a combination of m pills that provide exactly the same
amount of nutrients as a unit of food j is less expensive than the
cost of a unit of food j.

If the dieter concerns about the minimum requirement of m
nutrients, he will buy exactly 𝑏𝑖 units of pill i.



The Dual of a Linear Program

The problem of the druggist is to maximize his sales. This
problem can be formulated as an LP problem as follows:

(P) is the primal problem and (D) is the dual problem of (P).

(D): 'Max Z =
1

m

i i

i

bu
=

  

s.t. 
1

m

ij i j

i

a u c
=

  1,2,...,j n =  

    0iu    1,2,...,i m =  



The Dual of a Linear Program

Example 16: Consider the Product Mix Problem

Company A want to produces n products from m types
of material. The problem is to determine production
volumes of products so as to maximize total profit

• Available on-hand inventory of material i : 𝑏𝑖 (𝑖 = 1,2,… ,𝑚)

• Amount of material used for one unit of product j (𝑗 = 1,2,… , 𝑛): 𝑎𝑖𝑗
• Profit of one unit of product j : 𝑐𝑗 (𝑗 = 1,2,… , 𝑛)

• Production volume of product j: 𝑥𝑗 (𝑗 = 1,2,… , 𝑛)



The Primal Problem:

(P): Max Z =
1

n

j j

j

c x
=

  

s.t. 
1

n

ij j i

j

a x b
=

  1,2,...,i m =  

     0jx    1,2,...,j n =  



The Dual of a Linear Program

Suppose that company B wants to purchase all company A’
resources. This request will be attractive to company A if

• The offered unit price of material i from company B is higher
than the unit purchase price of material i an amount, says, 𝑢𝑖
for each i.

• The profit comes from selling the raw materials needed to
produce one unit of product j to company B should be higher
than the profit gained from producing one unit of product j.



The Dual of a Linear Program

The problem of company B is then to minimize the additional
cost of purchasing while satisfying the above constraints:

(D): 'Min Z =
1

m

i i

i

bu
=

  

s.t. 
1

m

ij i j

i

a u c
=

  1,2,...,j n =  

     0iu    1,2,...,i m =  



The Dual of a Linear Program

In matrix form:

(P): TMin c x  

 s.t. Ax b

  x 0  

 

  
(D): TMax b u  

 s.t. T A u c

  u 0  
 



The Dual of a Linear Program

Remarks:

1. The dual of the dual problem is the primal problem itself

Proof:

(D) is equivalent to: −Min −𝐛 𝑇𝐮

s.t. −𝐀 𝑇𝐮 ≥ −𝐜 ; 𝐮 ≥0

and the dual is: −Max −𝐜 𝑇𝐱

s.t. −𝐀𝐱 ≤ −𝐛 ; x ≥0

which is equivalent to (P).



The Dual of a Linear Program

2. The dual of the standard form LP:

Proof:

(P)

(P): TMin c x  

 s.t. =Ax b

  x 0  

 

  
(D): TMax b u  

 s.t. T A u c   

   unrestrictedu  
 



TMin 

s.t.




   
    −   

 

c x

A b
x

A -b

x 0



The Dual of a Linear Program

Hence,

(D)

(in which 𝐮 = 𝐯 −𝐰)



( )

 

TT

T T

T

Max 

s.t.

 + −


 
 −     

 
 

b v b w

v
A A c

w

v w 0

( )

( )

T

T

Max 

s.t.

,

 −


− 
 

b v w

A v w c

v w 0



T

T

Max 

s.t.

 unrestricted








b u

A u c

u





The Dual of a Linear Program

3. In general, the conversion between the Primal and Dual can be
summarized as follows:

Primal/Dual (Min) Dual/Primal (Max) 

ib  

ib  

ib=  

0iu   

0iu   

iu  unrestricted 

0ix   

0ix   

ix  unrestricted 

ic  

ic  

ic=  

 



The Dual of a Linear Program

Example 17:

Primal Problem Dual Problem

(P) Min  1 2 3 42 3 2x x x x− + − +  

  s.t. 

   

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

3 2

2 5 4 3

5 3 2 2

, 0, 0

x x x x

x x x x

x x x x

x x x

+ − − =

− − + − 

+ + −  −

 

 

 (D) Max  1 2 32 3 2u u u+ −  

  s.t. 

   

1 2 3

1 2 3

1 2 3

1 2 3

2 3

2 5 2

3 1

3 5 3

4 2 2

0, 0

u u u

u u u

u u u

u u u

u u

− +  −

− + 

− + +  −

− − − =

 

 



Dual Theorem

Consider the primal and dual problems in the form (standard!):

We says that

ത𝐱 is a primal feasible solution if 𝐀ത𝐱 ≥ 𝐛 and ത𝐱 ≥ 𝟎

ഥ𝐮 is a dual feasible solution if 𝐀𝑇ഥ𝐮 ≤ 𝐜 and ഥ𝐮 ≥ 𝟎

(P): TMin c x  

 s.t. Ax b

  x 0  

 

  
(D): TMax b u  

 s.t. T A u c   

  u 0  
 



Dual Theorem
Weak Duality Theorem

If ത𝐱 is a primal feasible solution and ഥ𝐮 is a dual feasible solution then

𝐜𝑇 ത𝐱 ≥ 𝐛𝑇ഥ𝐮

Proof: 𝐜𝑇 ത𝐱 ≥ 𝐀𝑇ഥ𝐮 𝑇ത𝐱 since 𝐀𝑇ഥ𝐮 ≤ 𝐜 ,ത𝐱 ≥ 𝟎
= ഥ𝐮𝑇𝐀ത𝐱
≥ ഥ𝐮𝑇𝐛 since 𝐀ത𝐱 ≥ 𝐛 ,ഥ𝐮 ≥ 𝟎
= ഥ𝐮𝑇𝐛 𝑇 = 𝐛𝑇ഥ𝐮



Dual Theorem
Weak Duality Theorem

Corollaries:

• If ത𝐱 is a primal feasible solution and ഥ𝐮 is a dual feasible solution
such that 𝐜𝑇 ത𝐱 = 𝐛𝑇ഥ𝐮 then ത𝐱 is an optimal solution of (P) and ഥ𝐮
is an optimal solution of (D) with the same optimal objective
value: 𝐜𝑇 ത𝐱 = 𝐛𝑇ഥ𝐮

• If (P) (or (D)) is unbounded then (D) (or (P)) is infeasible



Dual Theorem
Strong Duality Theorem

If both the primal and the dual problems are feasible, then both have
optimal solutions ത𝐱 and ഥ𝐮 that satisfy 𝐜𝑇 ത𝐱 = 𝐛𝑇ഥ𝐮

Proof:

1. If (P) (or (D)) is feasible but does not have optimal solution then (P) (or
(D)) is unbounded. Hence, (D) (or (P)) is infeasible! So, (P) (or (D)) should
have optimal solution.



Dual Theorem
Strong Duality Theorem

2. (P) is equivalent to: Min 𝐜𝑇𝐱

s.t. 𝐀𝐱 − 𝐲 = 𝐛 and 𝐱, 𝐲 ≥ 𝟎

Suppose ത𝐱 is the optimal solution of (P) and the optimal simplex tableau is:

In which

 z x  y  RHS 

z 1 T 1 T

B

− −c B A c  T 1

B

−−c B  T 1

B

−
c B b  

Bx  0  1−
B A  1−−B  

1−
B b  

 
   
   

  y

c c
c = =

c 0



Dual Theorem
Strong Duality Theorem

Note that the coefficient of the column associated with 𝐲 is:

T 1 T T 1 T T 1

1 0 0

0 1 0

0 0 1

B B B

− − −

− 
 −
 − = − = −
 
 

− 

y yc B A c c B 0 c B

1 1− −= −yB A B



Dual Theorem
Strong Duality Theorem

Let ഥ𝐮 = ҧ𝐜𝐁
𝑇𝐁−1 𝑇

, we have:

ҧ𝐜𝐁
𝑇𝐁−1𝐀− 𝐜𝑇 ≤ 𝟎 and − ҧ𝐜𝐁

𝑇𝐁−1 ≤ 𝟎 (due to optimality of (P))

⟹ 𝐀𝑇ഥ𝐮 ≤ 𝐜 and ഥ𝐮 ≥ 𝟎

⟹ ഥ𝐮 is a feasible solution of (D) that satisfies 𝐛𝑇ഥ𝐮 = 𝐜𝑇 ത𝐱

From the weak duality theorem, it can be concluded that ഥ𝐮 is an optimal
solution of (D).



Dual Theorem
Complementary Slackness Condition

If 𝐱 and 𝐮 are primal and dual feasible solutions then 𝐱 and 𝐮 are both

optimal if and only if

𝐮𝑇 𝐀𝐱 − 𝐛 = 0 and 𝐀𝑇𝐮 − 𝐜 𝑇𝐱 = 𝟎

i.e.,

and

1

0
n

ij j i i

j

a x b u
=

  =

1

0
m

ij i j j

i

a u c x
=

  =



Dual Theorem
Complementary Slackness Condition

Proof:

If 𝐱 and 𝐮 are both feasible, we have:

𝐀𝐱 − 𝐛 ≥ 𝟎 ⟹ 𝐮𝑇 𝐀𝐱 − 𝐛 ≥ 0 ⟹ 𝐮𝑇𝐀𝐱 ≥ 𝐮𝑇𝐛

𝐀𝑇𝐮 − 𝐜 ≤ 𝟎 ⟹ 𝐀𝑇𝐮 − 𝐜 𝑇𝐱 ≤ 0 ⟹ 𝐮𝑇𝐀𝐱 ≤ 𝐜𝑇𝐱

1. If 𝐱 and 𝐮 are both optimal, we have: 𝐮𝑇𝐛 = 𝐜𝑇𝐱, and hence,

𝐮𝑇 𝐀𝐱 − 𝐛 = 0 and 𝐀𝑇𝐮 − 𝐜 𝑇𝐱 = 0

2. If 𝐮𝑇 𝐀𝐱 − 𝐛 = 0 and 𝐀𝑇𝐮 − 𝐜 𝑇𝐱 = 0: 𝐮𝑇𝐀𝐱 = 𝐮𝑇𝐛 and 𝐮𝑇𝐀𝐱 = 𝐜𝑇𝐱 .

Therefore, 𝐱 and 𝐮 are both optimal solutions of (P) and (D).



Relationship between Primal – Dual Solution

Consider an iterative of the simplex method applied on a
standard LP with the current basis B and the associated simplex
table:

 z x  RHS 

z 1 T 1 T

B

− −c B A c  T 1

B

−
c B b  

Bx  0  1−
B A  

1−
B b  

 



Relationship between Primal – Dual Solution

• At each step of the simplex algorithm, we keep 𝐁−1𝐛 ≥ 𝟎 , and

thus the basic solution 𝐱 =
𝐱𝑩
𝟎

= 𝐁−1𝐛
𝟎

≥ 𝟎: always feasible.

• Let 𝐮 = 𝐜𝐁
𝑇𝐁−1 𝑇

then 𝐮 is dual feasible if and only if 𝐀𝑇𝐮 ≤ 𝐜,
i.e., 𝐜𝐁

𝑇𝐁−1𝐀 − 𝐜𝑇 ≤ 𝟎. This is the optimality condition of the
primal problem.

The primal optimality condition is actually

the dual feasibility condition



Relationship between Primal – Dual Solution

Hence, at any intermediate stage of the simplex method, we have:

(i) A primal basic feasible solution 𝐱 = 𝐁−1𝐛
𝟎

and

(ii) A dual infeasible solution 𝐮 = 𝐜𝐁
𝑇𝐁−1 𝑇

and Primal Obj. Value = 𝐜𝑇𝐱 = 𝐜𝐁
𝑇𝐁−1𝐛 = 𝐮𝑇𝐛 = Dual Obj. Value.

At the final simplex tableau, the dual solution become dual feasible.



Relationship between Primal – Dual Solution

At optimal solutions 𝐱 and 𝐮, the optimal objective value is
𝑧∗ = 𝐜𝑇𝐱 = 𝐛𝑇𝐮 = ҧ𝐜𝐁

𝑇𝐁−1𝐛. If 𝑏𝑖 increases one unit, the optimal

objective value will change and
𝑑𝑧∗

𝑑𝑏𝑖
= ҧ𝐜𝐁

𝑇𝐁−1
𝑖
= ത𝑢𝑖 . So, ത𝑢𝑖 is

the rate of change of the optimal objective value 𝑧∗ with respect
to the change of right-hand side value 𝑏𝑖 .

If constraint i is for a kind of resource,

ഥ𝒖𝒊 is called the shadow price of that resource



Dual Simplex Method

In some LP problems, it is easy to find an initial simplex tableau
which satisfies optimality conditions (or dual feasibility
conditions) but does not satisfy feasibility conditions (or dual
optimality conditions). For example,

Minimize 𝐜𝐓𝐱

s.t. 𝐀𝐱 ≥ 𝐛

𝐱 ≥ 𝟎

By introduce the surplus variables 𝐲, an initial infeasible simplex
tableau can be derived



Dual Simplex Method

The initial basic solution
𝐱
𝐲 =

𝟎
−𝐛

is infeasible but the

optimality condition −𝐜𝑇 𝟎 ≤ 𝟎 can be satisfied.

 z x  y  RHS 

z 1 T−c  0  0 

Bx  0  −A  I  −b  

 



Dual Simplex Method

In this case, if the simplex method introduced before is
employed (primal simplex method), some artificial variables
have to be introduced and it becomes more complicated to find
the optimal solution (two-phase or Big M methods should be
applied)

Starting with an optimal but infeasible simplex tableau, i.e., 𝑦0𝑖 ≤
0, ∀𝑖 ∈ 1,𝑚 , the dual simplex method can be applied to find
optimal solution.



Dual Simplex Method
PROCEDURE

Step 1: If 𝑦𝑗0 ≥ 0, ∀𝑖 ∈ 1, 𝑟 : stop, an optimal solution has been
found. Otherwise, select 𝑖 such that 𝑦𝑖0 = min

1≤𝑘≤𝑟
𝑦𝑘0 < 0.

Step 2: With the selected 𝑖, if 𝑦𝑖𝑗 ≥ 0, ∀𝑗 ∈ 1,𝑚 : stop, the primal
problem is infeasible. Otherwise, select 𝑗 such that

𝑦0𝑗

𝑦𝑖𝑗
= min

𝑘

𝑦0𝑘

𝑦𝑖𝑘
𝑦𝑖𝑘 < 0 and go to step 3.

Step 3: Pivot at 𝑦𝑖𝑗 and go back to step 1.



Dual Simplex Method

Example 18:

Introduce surplus variables:

Min  1 2 33 4 5x x x+ +  

   s.t. 

     

1 2 3

1 2 3

1 2 3

2 3 5

2 2 6

, , 0

x x x

x x x

x x x

+ + 

+ + 



 

Min  1 2 33 4 5x x x+ +  

   s.t. 

     

1 2 3 4

1 2 3 5

1 2 3 4 5

2 3 5

2 2 6

, , , , 0

x x x x

x x x x

x x x x x

− − − + =

− − − + =



 



Dual Simplex Method

Initial infeasible simplex tableau:

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 -3 -4 -5 0 0 0 

4x  0 -1 -2 -3 1 0 -5 

5x  0 -2* -2 -1 0 1 -6 

 



Dual Simplex Method

Iteration 1:

• Min{-5,-6} = -6

• Min{-3/-2, -4/-2, -5/-1} = 3/2

⇒ Pivot term -2*, 𝑥1 - entering variable; 𝑥5 - leaving variable.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 -1 -7/2 0 -3/2 9 

4x  0 0 -1* -5/2 1 -1/2 -2 

1x  0 1 1 1/2 0 -1/2 3 

 

1x2x3x4x5x4x1x



Dual Simplex Method

Iteration 2:

• The only negative RHS value: -2

• Min{-1/-1, (-7/2)/(-5/2), (-3/2)/(-1/2)} = 1/1

⇒ Pivot term -1*, -entering variable; -leaving variable.

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 0 -1 -1 -1 11 

2x  0 0 1 5/2 -1 1/2 2 

1x  0 1 0 -2 1 -1 1 

 

Optimal Solution:
𝑥1
∗ = 1, 𝑥2

∗ = 2, 𝑥3
∗ = 0

Objective Value = 11



Dual Simplex Method

Note 1: A simplex table of the dual simplex algorithm for a given
basis B has the form:

 Z 
1x  

2x  … 
jx  … 

mx  RHS 

Z 1 
01y  02y  … 

0 jy  … 
0my  00y  

iBx  0 
1iy  2iy  … ijy  … imy  0iy  

 

00 0k k

k D

z y y x


= − 0i i ik k

k D

x y y x


= −B



Dual Simplex Method

If 𝑦𝑖0 < 0 and 𝑦𝑖𝑗 ≥ 0, ∀𝑗 = 1,2, … ,𝑚 then the primal problem is
infeasible and hence, the dual problem is unbounded.

Proof: Since all 𝑥𝑗 ≥ 0 ⇒ 𝑥𝑩𝑖 = 𝑦𝑖0 −σ𝑘∈𝐷 𝑦𝑖𝑘𝑥𝑘 < 0: the primal

problem is infeasible



Dual Simplex Method

Note 2: In each iteration of the dual simplex method, primal
optimality condition (dual feasibility condition) is always satisfied
and the objective value does not decrease.

Proof: when pivoting at 𝑦𝑖𝑗, the new objective value 𝑧′ can be
expressed as:

𝑧′ = 𝑦00 − 𝑦0𝑗
𝑦𝑖0
𝑦𝑖𝑗

= 𝑦00 − 𝑦0𝑗𝑥𝑗

Due to 𝑦0𝑗 < 0 and 𝑥𝑗 ≥ 0: 𝑧′ = 𝑦00 − 𝑦0𝑗𝑥𝑗 ≥ 𝑦00



Dual Simplex Method

Furthermore, the new value of 𝑦0𝑘 , denoted by 𝑦𝑜𝑘
′ can be

expressed as: 𝑦𝑜𝑘
′ = 𝑦0𝑘 −

𝑦𝑖𝑘

𝑦𝑖𝑗
𝑦0𝑗. Hence,

If 𝑦𝑖𝑘 > 0: −
𝑦𝑖𝑘

𝑦𝑖𝑗
𝑦0𝑗 < 0 ⇒ 𝑦𝑜𝑘

′ ≤ 𝑦0𝑘 ≤ 0

If 𝑦𝑖𝑘 < 0: 𝑦𝑜𝑘
′ = 𝑦𝑖𝑘

𝑦0𝑘

𝑦𝑖𝑘
−

𝑦0𝑗

𝑦𝑖𝑗
≤ 0

due to
𝑦0𝑗

𝑦𝑖𝑗
= min

𝑘

𝑦0𝑘

𝑦𝑖𝑘
𝑦𝑖𝑘 < 0



Dual Simplex Method

Note 3: The dual simplex method is just simply the simplex
method applied to the dual problem by using the primal simplex
tableau.

Note 4: The optimal solution of the dual problem (if it exists) can
be determined from the shadow prices of the primal problem.



Dual Simplex Method

Example 19:

(P): Min 1 22x x− −      

s.t  

1 2

1 2

1

1 2

8
4

3

2

2 3

, 0

x x

x x

x

x x

+ 

+ 





      



Dual Simplex Method

The optimal simplex tableau of this LP (see example 7):

Optimal solution: 𝑥1
∗ = Τ3 2, 𝑥2

∗ = Τ1 2, 𝑍
∗ = − Τ7 2

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 0 0 -1 -1/2 -7/2 

3x  0 0 0 1 -8/3 5/6 7/6 

2x  0 0 1 0 1 -1/2 1/2 

1x  0 1 0 0 0 1/2 3/2 

 



Dual Simplex Method

The dual problem:

(D): Max 1 2 34 2 3u u u+ +      

s.t       

     

1 2 3

1 2

1 2 3

2 2

8
1

3

, , 0

u u u

u u

u u u

+ +  −

+  −



   



Dual Simplex Method

Denote 𝑈1 = −𝑢1, 𝑈2 = −𝑢2, 𝑈3 = −𝑢3, we have

Min 1 2 34 2 3U U U+ +      

s.t       

     

1 2 3

1 2

1 2 3

2 2

8
1

3

, , 0

U U U

U U

U U U

− − −  −

− −  −



   



Dual Simplex Method

Introduce slack variables:

    Min 1 2 34 2 3U U U+ +      

s.t       

     

1 2 3 4

1 2 5

1 2 3 4 5

2 2

8
1

3

, , , , 0

U U U U

U U U

U U U U U

− − − + = −

− − + = −



 



Dual Simplex Method

Apply dual simplex method - the initial simplex tableau is

 Z 
1U  

2U  
3U  

4U  
5U  RHS 

Z 1 -4 -2 -3 0 0 0 

4U  0 -1 -1 -2* 1 0 -2 

5U  0 -8/3 -1 0 0 1 -1 

 



Dual Simplex Method

Iteration 1: Min{-2,-1} = -2; Min{-4/-1, -2/-1, -3/-2} = -3/-2

⇒ Pivot term -2*, 𝑈3 -entering variable; 𝑈3 -leaving variable.

 Z 
1U  

2U  
3U  

4U  
5U  RHS 

Z 1 -5/2 -1/2 0 -3/2 0 3 

3U  0 1/2 1/2 1 -1/2 0 1 

5U  0 -8/3 -1* 0 0 1 -1 

 



Dual Simplex Method

Iteration 2: Min{-(5/2)/-(8/3), -(1/2)/-1} = -(1/2)/-1

⇒ Pivot term -1*, 𝑈2 -entering variable; 𝑈5 -leaving variable.

Optimal solution: 𝑢1
∗ =0, 𝑢2

∗ = − Τ1 2, 𝑍
∗ = − Τ7 2

 Z 
1U  

2U  
3U  

4U  
5U  RHS 

Z 1 -7/6 0 0 -3/2 -1/2 7/2 

3U  0 -5/6 0 1 -1/2 1/2 1/2 

2U  0 8/3 1 0 0 -1 1 

 



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

Consider the product mix problem: Produce n products from m
types of material.

• Available on-hand inventory of material 𝑖 (𝑖 = 1,2,… ,𝑚): 𝑏𝑖

• Amount of material i used for one unit of product 𝑗 (𝑗 = 1,2,… , 𝑛): 𝑎𝑖𝑗

• Profit of one unit of product j: 𝑐𝑗
′

Problem: determine production volumes of products so as to
maximize total profit.



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

Denote 𝑥𝑗 (𝑗 = 1,2, . . , 𝑛): production volume of product j.  

Objective Function:    Maximize Profit 𝑍′ = σ𝑗=1
𝑛 𝑐𝑗

′𝑥𝑗
or  Minimize  “Cost” 𝑍 = σ𝑗=1

𝑛 𝑐𝑗𝑥𝑗 with 𝑐𝑗 = −𝑐𝑗
′

Constraints:

* Material constraints: σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ∀𝑖 = 1,2, … ,𝑚

* Variable constraints: 𝑥𝑗 ≥ 0 ∀𝑗 = 1,2, … , 𝑛



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

It is noted that, slack variables 𝑥𝑘(𝑘 = 1,2,… ,𝑚) will be
introduced to convert the problem into standard form. The
optimal simplex tableau of the standard form problem can be
expressed as:

𝐞𝑘 is the unit column vector associated with 𝑥𝑘 in the matrix A.

 z 
jx  

kx  RHS 

z 1 T -1

j jcBc B A -  T -1

kBc B e  T -1

Bc B b  

Bx  0  -1

jB A  -1

kB e  -1
B b  

 



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

It should be noted that 𝐜𝐁
𝑇𝐁−1𝐞𝑘 = 𝐜𝐁

𝑇𝐁−1
𝑘

The optimal objective value: 𝑍∗ = 𝐜𝐁
𝑇𝐁−1𝐛 = σ𝑘=1

𝑚 𝐜𝐁
𝑇𝐁−1

𝑘
𝑏𝑘

Hence:
𝜕𝑧∗

𝜕𝑏𝑘
= 𝐜𝐁

𝑇𝐁−1
𝑘
= the z-value of 𝑥𝑘 at optimal solution

𝐜𝐁
𝑇𝐁−1

𝑘
is called the shadow price of material 𝑘 (𝑘 =

1,2,… ,𝑚). So, if the amount of material 𝑘 increases (decreases)
“one” unit, the optimal objective value will increase (decrease)
𝐜𝐁
𝑇𝐁−1

𝑘
unit provided that the optimality condition is still

satisfied.



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

Example 20: Produce two products A, B from three types of
material 1,2, and 3.

1kg of product A requires: 1kg material 1, 1kg material 2 and 2kg
material 3. Unit profit of A: 200 mil./ton

1kg of product B requires: 8/3kg material 1, 1kg material 2. Unit
profit of B: 100 mil./ton

Available amount of materials 1,2, and 3: 4, 2, and 3 tons.



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

The LP program:

Monetary unit used in objective function: 100 millions.

 Min 1 22x x− −     Min Z = 1 22x x− −  

s.t      s.t    

  

1 2

1 2

1

1 2

8
4

3

2

2 3

, 0

x x

x x

x

x x

+ 

+ 





        

1 2 3

1 2 4

1 5

1 2

8
4

3

2

2 3

, 0

x x x

x x x

x x

x x

+ + =

+ + =

+ =



 



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

The optimal simplex tableau:

Optimal solution: 𝑥1
∗ = Τ3 2, 𝑥2

∗ = Τ1 2, 𝑍
∗ = − Τ7 2

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 0 0 -1 -1/2 -7/2 

3x  0 0 0 1 -8/3 5/6 7/6 

2x  0 0 1 0 1 -1/2 1/2 

1x  0 1 0 0 0 1/2 3/2 

 



Important Parameters in the Simplex Tableau
Shadow Price (Dual Price)

From the optimal simplex tableau, it can be concluded that

1. Changing the amount of material 1 will not help increase the benefit

2. Increasing the amount of material 2 by 1 unit (1 ton) will help reduce
the “cost” by 1 unit (100 millions), or equivalently, increase the profit by
1 unit (100 millions).

3. Increasing the amount of material 3 by 1 unit (1 ton) will help reduce
the “cost” by 1/2 unit (50 millions), or equivalently, increase the profit by
1/2 unit (50 millions).

Note that the above analysis holds true only if the optimality condition is still
satisfied when changing RHS parameters.



Important Parameters in the Simplex Tableau
Reduced Cost

Consider the problem in example 20 and one of its simplex
tableau during the solution process (not the optimal one!):

 Z 
1x  

2x  
3x  

4x  
5x  RHS 

Z 1 0 1 0 0 -1 -3 

3x  0 0 8/3 1 0 -1/2 5/2 

4x  0 0 1 0 1 -1/2 1/2 

1x  0 1 0 0 0 1/2 3/2 

 



Important Parameters in the Simplex Tableau
Reduced Cost

The value 𝑐𝑗 − 𝐜𝐁
𝑇𝐁−1𝐀𝑗 (which is the z-value with opposite sign)

is called the reduced cost of producing product j.

For instances, in the above simplex tableau:

• Reduced costs associated with 𝑥1, 𝑥3, 𝑥4 are 0.

• Reduced cost associated with 𝑥2 is -1.

• Reduced cost associated with 𝑥5 is 1.



Important Parameters in the Simplex Tableau
Reduced Cost

Meaning of reduced cost:

Consider 𝑥2, we have:

This vector expresses the linear combination of basic variables

which is equivalent to 𝑥2. That is 𝑥2 ⇔
8

3
𝑥3 + 𝑥4 + 0𝑥1.

1

2

1 0 1/ 2 8 / 3 8 / 3

0 1 1/ 2 1 1

0 0 1/ 2 0 0

−

−     
     = − =
     
          

B A



Important Parameters in the Simplex Tableau
Reduced Cost

In order to understand the equivalence; let assume that in addition to
the production of the two products A, and B, we produce also C,D,
and E with the following information:

1kg of product C requires: 1kg material 1. Unit profit of C: 0

1kg of product D requires: 1kg material 2. Unit profit of D: 0

1kg of product E requires: 1kg material 3. Unit profit of E: 0

The LP model with these new added products will not change and 𝑥3,
𝑥4, 𝑥5 represent production volumes of C,D, and E, respectively.



Important Parameters in the Simplex Tableau
Reduced Cost

The material consumptions of each unit of the products can be expressed by

column vectors of the constraint matrix A:

It can be easily seen that the amount of each type of materials used to produce

one kg of product B is exactly the same as the total amount of each type of

materials used to produce 8/3kg of product C + 1kg of product D + 0kg of product

A. The expression 𝑥2 ⇔
8

3
𝑥3 + 𝑥4 + 0𝑥1 is used to illustrate the above relationship.

1 2 3 4 5

8
1 1 0 03

1 1 0 1 0

2 0 0 0 1

 
        
        = = = = =
        
                

A A A A A



Important Parameters in the Simplex Tableau
Reduced Cost

• 𝐜𝐁
𝑇𝐁−1𝐀2 = 0 0 −2

Τ8 3
1
0

= 0: This value is the “cost” to

produce the combination of (8/3kg of product C + 1kg of product
D + 0kg of product A), which consume the same amount of
materials as of 1kg of product B.

• Thus, 𝑐2 − 𝐜𝐁
𝑇𝐁−1𝐀2 = −1 is the reduction in total “cost” if 1kg

of B is produced instead of the combination (8/3kg of product C
+ 1kg of product D + 0kg of product A).



Important Parameters in the Simplex Tableau
Reduced Cost

So, if 𝑐2 − 𝐜𝐁
𝑇𝐁−1𝐀2 < 0 (the z-value >0) as in this case, it will be

better to produce B than its equivalent combination of (C,D,A) ⇒
𝑥2 should enter the basic solution to help reduce the objective

value.

The above analysis of reduced cost also explains for the

optimality condition in the primal simplex method discussed

before.


