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A B S T R A C T

This paper presents the ALNS metaheuristics, employing the idea of DE to solve the mechanical harvester as-
signment and routing problem with time windows (HARPTW) to maximize the total area serviced by a me-
chanical harvester under a sharing infield resource system. The effective ALNS is designed to solve large-scale
problems integrating the mechanical harvester assignment problem (HAP) and the mechanical harvester routing
problem (HRP). The newly developed destroy and repair methods are unique and effective. Additionally, four
new formulas have been developed to calculate the probability to accept the worse solution using linear and
parabola functions instead of the exponential function that is used mostly in the literature. The numerical results
show that the parabola function, which uses the information about the solution quality, outperforms all other
proposed heuristics. This demonstrates that the proposed heuristics are very efficient and are not only useful for
reducing the infield operations costs of small growers, but also for efficient management of the inbound logistics
equipment and machinery of the sugarcane supply system.

1. Introduction

Sugarcane is an important crop for Thailand’s economy. Presently,
the Thai sugar industry is faced with difficulties of increasing produc-
tion costs. They are thus searching for solutions to improve the profit-
ability for both sugarcane growers and the sugar mill industry. In
Thailand, the cost of sugarcane harvesting and transportation comprises
a large portion of the Thai sugarcane total production cost, with the
average cost of harvesting accounting for 66% of the total labor cost, or
equivalent to 35% of the total cost. The average cost for sugarcane
transportation was 2.79 US$/ton in 2003 (Office of Agricultural
Economics, 2003). Nearly half of the total cost is devoted to harvesting
and transportation.

Presently, infield machinery use, particularly in harvesting opera-
tions, has increased, since labor wages have risen greatly, and less labor
is available for manual infield work (Neungmatcha and Sethanan,
2015). In many parts of the world where sugarcane production is
steadily increasing, the harvesting mode has switched from manual
harvesting to the use of mechanical harvesters (Salassi and Champagne,
1998). This is likely to be the most crucial factor in reducing future
sugarcane production costs (Ahmed and Alam-Eldin, 2015), since it can
complete the harvest faster with more sugarcane harvested per unit of

time than manual harvesting and loading. However, a mechanical
harvester is very expensive. The fuel costs have risen significantly
faster, over the past many years, than the growth in the sugarcane price
paid to growers for sugarcane delivered to the mill (Sethanan and
Neungmatcha, 2016).

Most sugarcane growers in Thailand (approximately 80%) are
small-scale growers. Since most of them do not normally possess me-
chanical harvesters, at present these growers rent a mechanical har-
vester from outside people who own mechanical harvesters. However,
the outside people are not under contract to the mill, which usually
leads to paying unfair hiring costs, in cash, for harvesting, loading and
transporting by the small growers, resulting in high debts for the small-
scale growers.

These special problems prevailing in this industry relate to its
having limited resources and intense competition. As a result of re-
source constraints, the operating costs have increased greatly, espe-
cially for the inbound logistics process that involves planting, har-
vesting, and transportation, all of which need cost reduction. In
practice, the small-scale growers are not able to manage all procedures
effectively, because of their lack of bargaining power and inadequate
resources, which may eventually force them to give up growing su-
garcane or to shift to other economic crops. The Office of Agricultural
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Economics and the Ministry of Agriculture and Cooperatives re-
commend the sharing of mechanical harvesters among growers within a
village for further savings in cost for small-scale growers, and also to
increase the utilization of the mechanical harvesters.

The mill factories, therefore, play an important role in liaising be-
tween the small, medium or larger scale growers and third-party in-
bound logistics providers, under the mill contract in their service areas,
in terms of allocation and scheduling of available resources and guar-
anteeing fair service prices. Hence, in this resource sharing system,
small-scale growers will get mechanical harvester services from the
medium and larger growers, or third-party inbound logistics providers
who own mechanical harvesters, rather than spend a lot of money to
own mechanical harvesters themselves. The medium and large-scale
growers, or third-party inbound logistics providers, can service the
small-scale growers as long as their mechanical harvesters are com-
pletely available aside from harvesting their own sugarcane or for
others. If the mills could manage the needs of small-scale growers in
terms of time period and a number of mechanical harvesters required
and the availability of mechanical harvesters belonging to third-party
inbound logistics providers or medium and large-scale growers more
efficiently, the cost of sugar production by small-scale growers and the
mills would be lower. The medium and large-scale growers or third-
party inbound logistics providers (i.e., agents), would not only get paid
on time as contracted but could also earn more revenue from sharing
their available mechanical harvesters with others.

Thus, this research considers the allocation and routing of the
available mechanical harvesters to service the needs of small-scale
growers. In the mechanical harvester allocation problem (HAP), it is
decided when and where each mechanical harvester should be assigned
to which sugarcane fields, while in the mechanical harvester routing
problem (HRP), the route of each mechanical harvester is decided. A
key input to the HAP is the total time available for each mechanical
harvester, and also the total number of mechanical harvesters available
in each time period. These inputs depend on the harvest schedule as-
signed to sugarcane fields for the previous periods, a decision that be-
longs to the HRP. Thus, the two problems are closely connected, and it
is therefore likely that higher quality solutions can be obtained by
solving a model integrating the two problems. Since each sugarcane
field should be harvested differently at each time period, due to its
commercial cane sugar (CCS) value, a harvesting scheduling at a proper
time is required to increase CCS yields. In this paper, we consider the
mechanical harvester assignment and routing problem with time win-
dows (HARPTW) to maximize the total areas serviced by the mechan-
ical harvesters under a resource sharing system.

However, there are no publications on the HARPTW, and there is to
date no research that has applied Adaptive Large Neighborhood Search
algorithms (ALNS) to solve the HARPTW. The ALNS was proposed by
Ropke and Pisinger (2006). It extends the LNS by allowing repair op-
erators and multiple destroy to be used within the same search. A de-
stroy operator is chosen at each iteration, on the basis of choosing
probabilities which are adjusted dynamically during the search process,
according to the performance obtained by the operators in the previous
iterations (Mancini, 2016). Recently, the ALNS has been applied in
various research areas. For example, Muller (2011) applied the ALNS to
solve the resource-constrained project scheduling problem. Aksen et al.
(2014) applied the ALNS to solve the selective and periodic inventory
routing problem, and Monroy-Licht et al. (2017) used the ALNS for the
rural postman problem with time windows. Due to the attractive fea-
tures of Adaptive Large Neighborhood Search, this research focused on
the implementation of this methodology to solve the HARPTW with the
expectation of maximizing the total areas serviced by a resource sharing
system.

The main contributions of this paper are fourfold. First, the HAP and
HSP are integrated. Secondly, we present 8 destroy and 4 repair
methods. Normally, a good solution of a problem that combines as-
signment and routing problems is obtained from an algorithm that

continuously constructs the solution. Information from the assignment
and routing phases is needed for exchange with each other. Therefore, if
we destroy the connection of the assignment and the routing phases by
the destroy and repair methods, the solution can get worse. We design
our algorithms based on the preservation of this attribute. Our algo-
rithm consists of two phases, which are to construct the sequences of
the sugarcane fields and the mechanical harvesters; then the con-
struction of the complete algorithm will be performed. The destroy
method has been done to determine the sequence of the sugarcane
fields for each mechanical harvester, then the repair method that in-
cludes the various construction methods has been executed. Finally, a
good and effective solution from the destroy and repair method will be
obtained. As a consequence, we perform the destroy method with the
incomplete solution and we hide the algorithm to transform incomplete
solutions to complete solutions, and therefore our destroy and repair
methods are unique and effective. Thirdly, we present four new for-
mulas to accept the worse solution to be the starting solution for the
search to calculate the probability to accept the worse solution. These
formulas use linear and parabola functions instead of the exponential
function that is mostly used in the literature. The parabola function
allows a high chance of acceptance probability in the beginning and the
last phase of the algorithms, so that it has a better chance to escape
from a local optimum. Fourthly, adaptive large-scale neighborhood
search originally constructs the solution (complete solution) then
iteratively applies destroy and repair methods to improve the solution
quality. In our research, the destroy method has been made iteratively
in the incomplete solution, such as destroy the list of customers in the
VRP problem that has not yet been routed, then the repair method has
been applied. For the repair method, a good constructive algorithm is
hidden inside it to get a good solution. The final solution will be more
flexible, since the destroy and repair methods have been executed only
in the complete solution.

The remainder of this paper is organized as follows. In Section 2, a
brief literature review of the HARPTW problem and its variants is
presented. In Section 3, the mathematical model is developed. In
Section 4, the ALNS for the HARPTW problem is presented. Computa-
tional results are discussed in Section 5. Finally, the conclusion and the
future research direction are presented in the last section.

2. Literature review

Recently, the feedstock supply to sugar mills has received significant
attention in the academic literature. Most work on the sugarcane in-
dustry has been divided into value chain optimization, harvest sche-
duling and transportation (Lamsal, 2014; Sethanan and Neungmatcha,
2016). However, most work on the sugarcane industry relating to su-
garcane mechanical harvesters has been done in the last 10 years on
mechanical harvester scheduling. The route planning of a sugarcane
mechanical harvester in the sugarcane supply system has been studied
to manage the supply system for the mill to ensure continuous feed and
low operational costs, such as in the research study of Jiao et al. (2005),
Higgins (2006), Díaz and Pérez (2002), Le Gal et al. (2009) and
Sethanan and Neungmatcha (2016). Yet, to the best of our knowledge,
none of the literature addresses the integration of assignment and
scheduling of sugarcane mechanical harvesters to the sugarcane fields,
under the limitations of the mechanical harvester availability and the
CCS value of sugarcane fields.

Harvesting scheduling is an interesting topic in the optimization
literature. Various research studies have been done to solve the problem
to meet the objective. Recently, Kusumastuti et al. (2016) published a
review of harvest planning. Unfortunately, in this work, they could not
find a model which involves routes, processing times, clusters and time-
windows simultaneously. In the area of mechanical harvester sche-
duling/routing (HRP), various research studies have been done to solve
the problem to meet the objectives. Grunow et al. (2007) aim at pre-
serving a constant supply while minimizing the associated costs. The
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entire planning problem is structured in a hierarchical fashion: (1)
cultivation of the haciendas, (2) harvesting and (3) dispatching the
harvesting crews and equipment. Jena and Poggi (2013) determined
the routing of cutting machines during harvest periods of sugarcane
using mixed integer programming techniques.

Recently, Sethanan and Neungmatcha (2016) studied the increasing
sugarcane harvesting efficiency of the path planning of the mechanical
harvester, involving direction and field accessibility constraints, with
two objective functions being the minimization of harvested distance
and maximization of sugarcane yield, which are conflicting and must be
considered simultaneously. The variant of the particle swarm optimi-
zation combining gbest, lbest and nbest social structures (MO-GLNPSO)
was developed to solve sugarcane mechanical harvester route planning
(MHRP) to make efficient choices with multi-objectives. Later,
Cerdeira-Pena et al. (2017) studied a variant of the traveling salesman
problem with additional constraints of clusters, time windows and
processing times in cities by applying this model to a real-world pro-
blem related to an agricultural cooperative that needs to optimize the
routes of several mechanical harvesters. Two different heuristic algo-
rithms based on tabu search and the simulated annealing philosophy
were developed. He et al. (2018) studied the operational model to de-
termine the optimal combine mechanical harvester scheduling for
fragmental farmlands, with the objective of minimizing the wheat
harvesting period. The minimal difference in harvesting time among
combine-mechanical harvesters is considered as a constraint. The hy-
brid algorithm consisting of the tabu search (TS) and operators pro-
vided by a genetic algorithm is proposed to identify the optimal sche-
dule that achieves the objectives of minimizing the harvesting period
and minimizing the differences of harvesting time among combine
mechanical harvesters.

The HARPTW problem is an NP-hard problem (non-deterministic
polynomial-time hardness) for which there is no known polynomial
algorithm, so there is difficulty in finding the optimal solution. Thus,
the heuristic and/or evolutionary algorithms are potential alternatives
to be applied to guide the search more effectively. Recently, the ALNS
method is becoming very popular because of its simplicity of im-
plementation, as well as its ability to find a good solution. It has been
applied in various research areas such as the vehicle routing problems
(see Bruglieri et al., 2015; Chen et al., 2018; Ribeiro and Laporte, 2012;
Wen et al., 2016; Thevenin and Zufferey, 2014; François et al., 2016; Li
et al., 2016; Dayarian et al., 2015; Hintsch and Irnich, 2018; Demir
et al., 2012), scheduling problems (see Liu et al., 2017; Rifai et al.,
2016; Thevenin and Zufferey, 2018; Lusby et al., 2016), Location-
routing problems (see Koç, 2016), Generalized Assignment Problems
(see Yagiura et al., 2004), and Traveling Salesman Problems (see Smith
and Imeson, 2017).

Even as the performance of the ALNS has increased continuously,
the hybridization of the ALNS and other methods has been used to
enhance the performance of the pure ALNS. New papers on the hy-
bridization of the ALNS have been published recently. For instance,
ALNS is integrated into the variable neighborhood search (LNS) algo-
rithm usually in the shaking phase, such as Stenger et al. (2013) and Li
et al. (2015). The neighborhood strategy is chosen using the roulette
wheel method based on the success rate of each neighborhood. Re-
cently, Alinaghian and Shokouhi (2018) developed the hybrid adaptive
large neighborhood search (ALNS) and the variable neighborhood
search (LNS) algorithms to solve the multi-depot multi-compartment
vehicle routing problem. The results show the good performance of the
proposed hybrid algorithm. Likewise, Sze et al. (2016) proposed an
ALNS incorporating LNS as a diversification strategy and applied it to
the capacitated vehicle routing problem. A simple and flexible data
structure and a neighborhood reduction scheme are embedded. The
proposed hybrid algorithm produces very competitive results.

Additionally, ALNS is also integrated with other heuristics. For ex-
ample, Žulj et al. (2018) developed a metaheuristic hybrid heuristic
based on tabu search and ALNS (i.e., ALNS/TS) to solve the order-

batching problem. The ALNS/TS shows significant advantages on the
larger instances of the existing benchmark sets, and can solve the newly
generated large-scale instances. Qu and Bard (2012) developed a
greedy randomized adaptive search procedure (GRASP) for pickup and
delivery problems with transshipment. In this paper, adaptation of
various insertion and removal algorithms was specialized to accom-
modate transshipments.

Review of past research shows that despite the importance of the
integration of assignment and scheduling of mechanical sugarcane
harvesters to the sugarcane fields under the limitations of the me-
chanical harvester availability and the CCS value of sugarcane fields,
this aspect of the problem has remained neglected. Therefore, this
paper contributes to the literature by developing the mathematical
model for the HARPTW for small-scale problems. Considering the NP-
Hardness of the problem, an effective ALNS that employs the idea of
Differential Evolution (DE) is designed to solve large-scale problems.
Over the last decade, DE, first introduced by Storn and Price (1997), has
been one of the best evolutionary algorithms, and is used extensively in
various fields, since its features make it very attractive for numerical
optimization (Dechampai et al., 2017).

3. Problem statement and mathematical model formulation

3.1. Problem statement

As outlined in Fig. 1, in each time period, we have a pre-specified
number of mechanical harvesters available and also a number of su-
garcane fields to be serviced. Then we schedule the mechanical har-
vesters to harvest the sugarcane fields by moving them to service the
sugarcane fields as scheduled. After servicing the first sugarcane field, a
mechanical harvester can move to the next field directly, or go back to
the base if it runs out of service time. Each sugarcane field can have
time windows due to the maturity of the sugarcane to be harvested or
the working condition of the fields.

From Fig. 1, we have 2 sets of mechanical harvesters and 11 su-
garcane fields to be harvested. The set of mechanical harvesters is not to
be assigned to a sugarcane field if all conditions are not met, such as no
sugarcane fields have low CCS value, no mechanical harvester is
available as needed, or no predefined constraints are met. The mathe-
matical model of the problem is presented in Section 3.2.

3.2. Mathematical formulation

Based on the characteristics of the HARPTW problem, the mathe-
matical model is constructed. The details of indices, parameters, deci-
sion variables, objective function and constraints are as follows.

Indices

i, k indices for sugarcane field, i, k=1… I
z index for mechanical harvester,

z=1…Z

Parameters

Ti
E Earliest arrival time of mechanical harvester in field i

Ti
L Latest arrival time of mechanical harvester in field i

Dzi
1 Distance to move mechanical harvester z to field i

Dik
2 Distance between field i and k

Ri Area of sugarcane field i (rai)
Sz Harvest speed of mechanical harvester z (minutes per rai)
Hz Maximum available harvest time of a mechanical harvester z in one day

(minutes)
Tz Traveling rate per kilometer of mechanical harvester z

Decision Variables
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Xzik ⎧
⎨⎩

z i k1 if mechanical harvester is traveling from to
0 otherwise

Yi ⎧
⎨⎩

i1 if field is visited by at least one mechanical harvesterz
0 otherwise

Cz Start time of mechanical harvester z
Wzi Start time of mechanical harvester z at field i
Azi Arrival time of mechanical harvester z at field i
Ezi ⎧

⎨⎩
i z1 1 if field is assigned to mechanical harvester set

0 otherwise
Uzk Accumulated time used at field k by mechanical harvester z
Qzk Time used to harvest field k using mechanical harvester z
F The total areas harvested by mechanical harvester under a harvesting-sharing

system

Objective function

∑=MaximizeF R X
zik

i zik
(1)

Subject to

∑ ∑ ∑

∑ ∑

× × + × × + × ×

+ × + +

≤
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i 1 is a dummy node that represents the node

where z starts travelling

k
zk z z k
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i k
ik z zik

i

i

z zi i
zi z

z

1
1

1
1

,

2

(2)

≥ + × + × × + ×

+ ×

× − ∀ = ⋯ = ⋯ ≠
∀ = ⋯

A A W X T D X E R
S

T E

X

( ) ( )

( )

(1 ) i 2 I, k 2 I and i k
z 1 Z

zk zi zi zik z ik zik zi
i

z

i
L

zi

zik

2

(3)

= ∀ = ⋯A C z 1 Zz z1 (4)

= ∀ =W C z 1. ..Zz z1 (5)

≤ ≤ ∀ =
∀ =

T A T i 2. ..I
z 1. ..Zi

E
zi i

L
(6)

∑ ≤ ∀ = ⋯E Y i 2 I
z

zi i
(7)

≤ ∀ = ⋯ = ⋯ ≠
∀ = ⋯

X E i 2 I, k 2 I and i k
z 1 Zzik zi (8)

∑ ∑− = ∀ = ⋯ ≠
∀ = ⋯

X X 0 k 2 I and i k
z 1 Zi

zik
i

zki
(9)

∑ = ∀ = ⋯ ≠X Y i 2 I and i k
z k

zik i
, (10)

∑ = ∀ = ⋯ ≠X Y i 2 I and i k
z k

zki i
, (11)

≥ + − + × + − +

× ∀ = ⋯ ≥
≠

U U Q H H X X Q Q

X

( ( ( ) ( )

) i 2 I, k 1
and i k

zk zi zk z z zki zik zk zi

zki (12)

≤ − − × ∀ = ⋯U H H Q X( ) k 2 I and k is first stopzk z z zk z k1

(13)

∑≥ + × ∀ = ⋯
=

U Q Q X k 2

I and k is not the first stop

zk zk
i

I

zi zik
2

(14)

≥X 0zik (15)

≥Y 0i (16)

≥C 0z (17)

≥W 0zi (18)

≥A 0zi (19)

≥E 0zi (20)

≥U 0zk (21)

≥Q 0zk (22)

≥F 0 (23)

The objective function (3.1) is to maximize the agricultural area of
the sugarcane in units of rai. Constraint 3.2 is used to confirm that in
one day the time used to travel from z to all fields, harvest time and
start time must not exceed the maximum time available for each me-
chanical harvester. Constraints 3.3 indicate the arrival time of z at field
i while 3.6 is used to verify that the arrival time of mechanical harvester

Fig. 1. Illustration of the mechanical harvester sequence representing a solution of the HARPTW problem.
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z at field i must lie within field i time windows. Constraints 3.4 and 3.5
show the arrival and start time at the location that z is in are just its
start and start time. Constraints 3.7 and 3.8 indicate that the tour be-
tween i and k can occur only when field i is used by mechanical har-
vester z. Constraints 3.9–3.11 indicate when the tour must enter i and
must leave i. Constraint 3.12 is the cumulative amount of time used to
harvest field k using mechanical harvester z, which must be higher than
the cumulative time used to harvest field i when k is harvested after i on
the same route. 3.13 addresses that when k is the first stop, the cu-
mulative harvest time at field k is equal to the time used to harvest field
k using mechanical harvester z. Finally, 3.14 shows that the cumulative
time used to harvest on the route of mechanical harvester z at field k is
equal to the cumulative time used to harvest all of the fields that are on
the route of z, plus the time used to harvest field k using mechanical
harvester z. 3.15–3.23 are used to guarantee that the decision variables
must be greater than or equal to zero.

In the HARPTW problem, Lingo v.11 for Windows was used to find
the optimal solution. Although the optimal solution was obtained for
the problem, the computational time was excessive. Attempts to solve
the medium- or large-size problems were unsuccessful since they re-
quired too much CPU time. Therefore, an effective ALNS that employs
the idea of DE was developed to obtain a near-optimal solution for
realistic problems.

4. The proposed heuristics

4.1. The ALNS and development of 8 newly invented destroy methods and 4
repair methods

When the size of the problem becomes too large and too compli-
cated to be solved by exact solution methods (i.e. mathematical model),
in this study, Adaptive Large Neighborhood Search (ALNS) is applied.
The general procedure of ALNS is presented in Fig. 2. From this figure,
we can describe the operation as follows.

Step1: Generate an initial solution. In this study, the initial solution
is randomly constructed.
Step2: The destroy method is randomly selected according to the
performance of the proposed destroy method. An effective destroy
method has a higher probability of being selected. Then go to Step 3.

Step3: The repair method is selected to return the feasible solution
to the algorithm.
Step4: For acceptance of the new solution, the better solution is
accepted but a worse solution is accepted with a certain probability.

Then redo steps (2) to (4) until the stopping criteria are fulfilled.
To improve the algorithm, in this study, 8 newly invented destroy

methods and 4 repair methods are presented, while 2 more acceptance
methods are presented beside the exponential probability that is fre-
quently used in ALNS research. The destroy methods have been de-
signed to remove the entities from the current solution based on the
possibility to reduce the total cost of the problem. The techniques that
are to be used to select the entities can be randomly selected, removing
the most costly entity or removing the cheapest entities. The procedures
of the 8 destroy methods are detailed as follows:

Destroy 1: FirstCS/BestCS/O1/In routine
Step 1: Calculate the amount of resources used (RS) by all servers.
Step 2: Order the servers according to their RS in increasing order
and call it O1.
Step 3: Calculate the slack in resources used (S-RS) of all other
servers. S-RS is calculated from the difference of RS of the current
assignment when exchanging the clients assigned to the server
which is in the first rank (FirstCS) and the target server.
Step 4: Remove clients FirstCS and the Clients that have the
maximum S-RS (BestCS).

Destroy 2: RandO1/In Routine
Step 1: Randomly order the servers and call it O1.
Step 2: Calculate the slack in resources used (S-RS) of all other
servers. S-RS is calculated from the difference of RS of the current
assignment when exchanging the clients assigned to the server
which is in the first rank (RandFirstCS) and the target server.
Step 3: Remove clients RandFirstCS and the Clients that have the
maximum S-RS (BestCS).

Destroy 3: FirstCS/BestCS/O1/De routine
Step 1: Calculate the amount of resources used (RS) by all servers.
Step 2: Order the servers according to their RS in decreasing order
and call it O1.
Step 3: Calculate the slack in resources used (S-RS) of all other
servers. S-RS is calculated from the difference of RS of the current

Fig. 2. General Procedure of ALNS.
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assignment when exchanging the clients assigned to the server
that is in the first rank (FirstCS) and the target server.
Step 4: Remove clients FirstCS and the Clients that have the
maximum S-RS (BestCS).

Destroy 4: RandO1/De routine
Step 1: Randomly order the servers and call it O1.
Step 2: Calculate the slack in resources used (S-RS) of all other
servers. S-RS is calculated from the difference of RS of the current
assignment when exchanging the clients assigned to the server
which is in the first rank (RandFirstCS) and the target server.
Step3: Remove clients RandFirstCS and the Clients that have the
minimum S-RS (BestCS).

Destroy 5: PCS/O2/1 routine
Step1: Find O2 which is the order of the clients which are ranked
using their resources used in decreasing order. Please note that
only the assigned clients are sorted.
Step2: Find the server that services the clients that are in the first
rank of order O2 and call it BestCS.
Step3: Find the position in the route of BestCS of the first rank in
order O2 and call it PCS.

Destroy 6: PCS/O2/2 routine
Step 1: Find O2, which is the order of the clients that are ranked
using their resources used in decreasing order. Please note that
only the assigned clients are sorted.
Step2: Find the servers that service the clients which are in the
first and the second rank of order O2 and call them BestCS1 and
BestCS2.
Step 3: Find the positions in the route of BestCS1 and BestCS2 of
the first rank in order O2 and call them PCS1 and PCS2.

Destroy 7: ATT/1 routine
Step 1: Randomly select one client out of I clients. The probability
of the client to be selected is calculated from its attractiveness
score (AT). The selected client is called TaBuList.
Step 2: Find the server that services the selected client and call it
BestCS.
Step 3: Find the position in the route of BestCS and call it PCS.

Destroy 8: ATT/2 routine
Step 1: Randomly select two clients out of I clients. The prob-
ability of a client to be selected is calculated from its attractive-
ness score (AT). The selected client is called TaBuList1 and
TaBuList2
Step 2: Find the servers that service the selected clients and call
them BestCS1 and BestCS2.
Step 3: Find the positions in the route of BestCS1 and BestCS2 and
call them PCS1 and PCS2.

After the entities are removed from the solution, an effective
method which forms a feasible solution after the destroy method has
been used is needed. Four repair methods have been designed based on
the idea of various local search techniques. These repair methods are:
ExRoute, PartialReRoute, ReRouteTabu, and FixedReRoute. To
retain the searching capacity, the scores of all destroy and repair
methods have been updated. We present the two newly invented for-
mulas to accept the worse solution to be the current solution to destroy
and repair in the next iteration. These two formulas are designed based
on the idea to increase the diversification behavior of the proposed
heuristics. These formulas include the parabola and linear acceptance
formulas so that there is more variety to accept the worse solutions. The
procedures of the repair methods are presented as follows:

Repair 1: ExRoute
Step 1: Exchange all clients that are in FirstCS and BestCS (if
possible according to all constraints).
Step 2: Re-route unassigned clients into FirstCS and BestCS (if
possible).

Repair 2: PartialReRoute

Step 1: Sort the servers in decreasing order according to their
resources used and call it order O3.
Step 2: Decide the number of clients that will be re-routed by Eq.
(24).

= × ×
− ×

−M Ceil[0.5 N exp ]
MaxIt

MaxIt It
( 0.01 )

(24)

where M is the number of servers that will be re-routed,
MaxIt=maximum iterations that will be executed, I is the current
iteration and N is the number of mechanical harvesters.

Step 3: Reroute all un-assigned clients and the clients that are in the
last M servers in order O3.
Repair 3: ReRouteTabu

Step 1: Rank all clients that are not in the TaBuList/TaBuList1/
TaBuList2 in decreasing order according to the resources used and
call it ListA.
Step 2: Put TaBuList/TaBuList1/TaBuList2 after the last field in
ListA and call it ListB.
Step 3: Re-Route List B.
Repair 4: FixedReRoute

Step 1: Fix the route of clients that have position before position
PCS/PCS1/PCS2 of BestCS/BestCS1/BestCS2.
Step 2: Re-reroute all clients that are not in BestCS/BestCS1/
BestCS2.

4.2. Demonstration of the ALNS application

To demonstrate the application of the ALNS, three mechanical
harvesters which have 10 working hours per day, and 10 sugarcane
fields are given in order to simplify the problem. If the server represents
the mechanical harvester, the clients represent the sugarcane fields, and
the resources used are replaced by Field size in order to make the
generic framework work with the proposed problem. Details of the
proposed algorithm using 8 destroy and 4 repair methods are as fol-
lows.

Step 1: The initial solution is randomly constructed 10 times, and
the best solution among all solutions is selected as the starting so-
lution (V, V*, z(V) and z(V*)) when x is the current solution, and z
(V) is the objective function of the current solution. V* and z(V*) are
the best solution and the best objective function.

From Fig. 3, there are 10 sugarcane fields which have areas of 80,
120, 140, 89, 90, 160, 140, 130, 180 and 170 rai (1 rai= 0.16 Ha), and
there are three mechanical harvesters which have a pre-specified
maximum working time which is 10 h per day. When constructing the
solution, the time windows of each field need to be considered. The
traveling time from the current position of the mechanical harvester to
the first field, the harvest time, the traveling time between fields which
are on the same route, and the traveling time from the last field to the
base station of the mechanical harvester are included in the time used
by the mechanical harvester, and this amount of time must not exceed
600min. Fig. 3 shows that the best solution is V2 (V=V*=V2) me-
chanical harvester No. 2 due to it has the maximum number of rai that
can be cut in one day in which mechanical harvester 1 cuts sugarcane
F2, F3 and F10, mechanical harvester 2 cuts F4 and F6 while me-
chanical harvester 3 cuts fields 1 and 9. This harvest plan generates a
939 rai harvest area.

Step 2: In this step, we will destroy the current solution by using one
out of 8 destroy routines.
Step 3: After the destroy method has been used, the repair method is
needed to return the feasibility of the solutions. If the server re-
presents the mechanical harvester, the clients represent the su-
garcane fields and the resources used are replaced by field size in
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order to make the generic framework work with the proposed pro-
blem. Details of using 8 destroy and 4 repair methods are as follows.

Destroy 1: FirstCS/BestCS/O1/In

Step 1: Calculate the amount of area (RS) that the mechanical har-
vester can harvest.
Step 2: Order the mechanical harvester according to their RS by
increasing order and call it O1.
Step 3: Calculate the slack of area that can be harvested by the
mechanical harvester (S-RS). S-RS is calculated from the difference
of RS of the current assignment when exchanging the field assigned
to the mechanical harvester that is in the first rank (FirstCS) and the
target mechanical harvester.
Step 4: Remove field FirstCS and the field that has the maximum S-
RS (BestCS).

Destroy 2: RandO1/In

Step 1: Randomly order the servers and call it O1.
Step 2: Calculate the slack of area that can be harvested by the
mechanical harvester (S-RS). S-RS is calculated from the difference
of RS of the current assignment and when exchanging the field as-
signed to the mechanical harvester that is in the first rank (FirstCS)
and the target mechanical harvester.
Step 3: Remove field FirstCS and the field that has the maximum S-
RS (BestCS).

Destroy 3: FirstCS/BestCS/O1/De

Step 1: Calculate the amount of area (RS) that the mechanical har-
vester can harvest.
Step 2: Order the mechanical harvesters according to their RS in
decreasing order and call it O1.
Step 3: Calculate the slack of area that can be harvested by the
mechanical harvester (S-RS). S-RS is calculated from the difference
of RS of the current assignment when exchanging the field assigned
to the mechanical harvester that is in the first rank (FirstCS) and the
target mechanical harvester.
Step 4: Remove field FirstCS and the field that has the maximum S-
RS (BestCS).

Destroy 4: RandO1/De

Step 1: Randomly order the servers and call it O1.
Step 2: Calculate the slack area that can be harvested by the

mechanical harvester (S-RS). S-RS is calculated from the difference
of RS of the current assignment when exchanging the field assigned
to the mechanical harvester that is in the first rank (FirstCS) and the
target mechanical harvester.
Step 3: Remove field FirstCS and the field that has the minimum S-
RS (BestCS).

Destroy 5: PCS/O2/1

Step 1: Find O2, which is the order of the fields that are ranked from
their available area in decreasing order. Please note that only the
assigned fields are sorted.
Step 2: Find the mechanical harvester that harvests the fields that
are in the first rank of order O2 and call it BestCS.
Step 3: Find the position in the route of BestCS of the first rank in
order O2 and call it PCS.

Destroy 6: PCS/O2/2

Step 1: Find O2, which is the order of the fields which are ranked by
their available area in decreasing order. Please note that only the
assigned fields are sorted.
Step 2: Find the mechanical harvester that harvests the fields that
are in the first and second rank of order O2 and call them BestCS1
and BestCS2.
Step 3: Find the position in the route of BestCS1 and BestCS2 of the
first rank in order O2 and call them PCS1 and PCS2.

Destroy 7: ATT/1

Step 1: Randomly select one field out of I fields. The idea is that a
different field should have a different attractiveness to be selected at
every iteration. The attractiveness score will be added to the current
attractiveness score if the field is the best solution. Otherwise, the
attractiveness score will remain the same.

For an example in an arbitrary iteration, there are 10 fields and the
current attractiveness score (AS) is as shown in Table 1. In the current
iterations, the best solution is the vector shown in Fig. 3. Thus, fields
F1, F2, F3, F4, F6, F9, and F10 will increase by 2 scores. The result of
the attractiveness score of the current iteration is shown in Table 1.

Then we apply the popular Roulette wheel selection process to se-
lect one of these fields to be the position that we will start to re-assign
the route. The selected field is called TaBuList.

Step 2: Find the mechanical harvester that services the selected field

Fig. 3. Examples of 3 randomly constructed solutions (V1, V2, and V3).
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and call it BestCS1 and BestCS2. If F6 is selected then BestCS will be
mechanical harvester 2 (Fig. 1).
Step 3: Find the position in the route of BestCS and call it PCS. If F6
is selected then PCS will be 2.

Destroy 8: ATT/2

Step 1: Randomly select two fields (called AF1, AF2) out of I fields.
The idea is that different fields should have a different attractiveness
to be selected. At every iteration, the attractiveness score will be
added into the current attractiveness score if the field is in the best
solution. Otherwise, the attractiveness score will remain the same.

For an example in an arbitrary iteration, there are 10 fields and the
current attractiveness score (AS) is as shown in Table 2. If in the current
iteration the best solution is the vector shown in Fig. 3, fields F1, F2, F3,
F4, F6, F9, and F10 will increase by 2 scores. The result of the attrac-
tiveness score of the current iteration is shown in Table 2.

Then we apply the popular Roulette wheel selection process to se-
lect one of these fields to be the position that we will start to re-assign
the route. The selected field is called TaBuList1 and TaBuList2.

Step 2: Find the mechanical harvester that services the selected field
and call it BestCS1 and BestCS2. If F6 and F9 are selected then
BestCS1 and BestCS2 will be mechanical harvesters 2 and 3 (Fig. 1)
consequently.
Step 3: Find the position in the route of BestCS1 and BestCS2 and
call it PCS1 and PCS1
Then PCS1 and PCS2 will be 2 and 2 consequently.

Repair 1: ExRoute.

Step 1: Exchange all fields that are in FirstCS and BestCS (if possible
according to the time windows and time constraints).
Step 2: Re-route unassigned fields into FirstCS and BestCS (if pos-
sible).

Repair 2: PartialReRoute

Step1: Sort mechanical harvesters in decreasing order according to
total rai that is cut by a particular mechanical harvester, and call it
order O3.
Step2: Decide the amount of mechanical harvester that will be re-
routed by Eq. (24).
This equation is based on a reduced number of re-routing mechan-
ical harvesters when the iteration is higher, so that at the beginning

of the execution of the algorithm it can search a wider space.
Step 3: Reroute all un-assigned fields and the fields that are in the
last M mechanical harvesters in order O3.

Repair 3: ReRouteTabu

Step 1: Rank all fields that are not in the TaBuList, TaBuList1, and
TaBuList2 in decreasing order according to the size of the field (rai)
and call it ListA.
Step 2: Put TaBuList, TaBuList1, and TaBuList2 after the last field in
ListA and call it ListB.
Step 3: Re-Route List B.

Repair4: FixedReRoute

Step 1: Fixed field before PCS, PCS1, PCS2 of BestCS, BestCS1,
BestCS2 consequently.
Step 2: Re-reroute all fields that are not in BestCS, BestCS1 or
BestCS2.

Please note that if Destroy methods 1–4 are selected, only Repair
methods 1 and 2 can be applied and when Destroy methods 5–8 are
selected only repair methods 3 and 4 can be used. We can conclude the
matching of using Destroy and Repair methods as in Table 3.

The Destroy and Repair methods are randomly selected using their
attractiveness. The attractiveness is updated during the simulation ex-
ecution. The procedure of the updating is explained as follows.

The attractiveness of Destroy and Repair Methods (AT)
The probability to select one out of the Destroy and Repair methods

is calculated from the current score of each Destroy and Repair method.
The selected Destroy and Repair methods in a particular iteration are
allowed to add a new score into their current scores. The new score is
assigned using the following rules.

(1) Add 10 scores when the new best solution is found in that iteration.
(2) Add 8 scores when the solution found in that iteration is better than

the accepted solution in the previous iteration.
(3) Add 6 scores when the solution found in that iteration is worse than

that of the accepted solution in the previous iteration, but it is ac-
cepted as the next current solution using Formulas 1–5.

(4) Add 4 scores when the solution found is not accepted by Formulas
1–5.

Then the current score is updated and Roulette wheel selection is
used to pick one of the Destroy and Repair methods. For example, if the
current score of the Destroy methods 1–8 is 221, 432, 123, 451, 324,
225, 254 and 310, the total score for all methods is 2140. We use the
total score to find the probability of selecting each Destroy method by
use (score of each Destroy method)/(total score) and the result is 0.09,
0.18, 0.05, 0.19, 0.14, 0.10, 0.11 and 0.13. Then find the cumulative
probabilities of all methods which are 0.09, 0.28, 0.33, 0.52, 0.66, 0.76,
0.87 and 1.00. Finally, a random number is generated. For example, if
the random number is 0.56, then Destroy method 5 will be selected.
This procedure can be applied to the Repair method as well.

Step 4: The acceptance of a worse solution

If the newly generated solution is better than that of the current
solution, it is automatically accepted to be the next current solution. A
worse solution will sometimes be accepted according to some prob-
ability function. In this study, 5 acceptance functions are applicable to
choose for use which are Formulas 1 to 5.

Formula 1:

= − −
×p exp

Z V Z V
T K

( ( ) ( ))'

(25)

Table 1
Added score example of the destroy 7 routines.

Field AS (t) Added score AS(t+ 1) Field AS (t) Added score AS(t+ 1)

F1 50 2 52 F6 96 2 98
F2 90 2 92 F7 60 0 60
F3 40 2 42 F8 46 0 46
F4 80 2 82 F9 81 2 83
F5 85 0 85 F10 81 2 83

Table 2
Score adding example of destroy 8 routines.

Field AS (t) Added score AS(t+ 1) Field AS (t) Added score AS(t+ 1)

F1 50 2 52 F6 96 2 98
F2 90 2 92 F7 60 0 60
F3 40 2 42 F8 46 0 46
F4 80 2 82 F9 81 2 83
F5 85 0 85 F10 81 2 83
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in which p is the probability to accept the worse solution when V′ is the
current solution and Z(V′) is the objective function of V′. V is the cur-
rently used solution and Z(V) is the objective function of V. T is a
predefined temperature, as in the Simulated Annealing algorithm, and
K is the predefined parameter.

Formula 2:

= −
−
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⎣

⎢
⎢

⎛
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where It is the current iteration and MaxIt is the predefined maximum
number of iterations.

Formula 3:

= − −⎡⎣
− ⎤⎦p exp1 It MaxIt( 2 )2

(27)

Formula 4:

= −p It
MaxIt

1 (28)

Formula 5:

= −
+−

p 1
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Formula 1 is a simple formula used in the Simulated Annealing al-
gorithm, while Formulas 2 and 3 are adapted from the parabola func-
tion, where the very first and last iterations have the highest probability
to accept the worse solution. Formula 2 takes account of the solution
quality (Z(V′)) to be the attractiveness to be selected as well, while
Formula 3 only uses the current iteration as the attractiveness.
Formulas 4 and 5 are more or less the same as Formulas 2 and 3, but use
linear functions instead of an exponential function to calculate the
probability. In this research, Formulas 1 to 5 are selected to be used in
the proposed algorithm and the performance compared.

5. Computational framework and results

5.1. Computational framework

The case study mill uses approximately 15,000 tons of sugarcane per
day, with 3000 contract growers that are separated into 10 sub-regions.
Currently, the sugar mill owns 80 mechanical harvesters in total. Each
machine can harvest 15–25 tons per day depending on its performance,
size, and capacity.

In order to test the model, the Adaptive Large Neighborhood Search
(ALNS) employed the idea of DE in the mechanical harvester assign-
ment and routing problem with time windows (HARPTW) to maximize
the total area serviced by the harvesting-sharing system. It was also
validated by comparing the solutions with the optimal solution ob-
tained by Lingo v.11 for Windows software and the proposed algo-
rithms. The performance of the proposed methods was tested using 3
groups of problem instances and one real case study. Details of gener-
ated data are shown in Table 4.

Table 4 shows that 21 problem instances were used to test the al-
gorithm in total, which includes the real case study. The research pre-
sents 4 new acceptance of worse solution criteria and 1 popular for-
mula, thus 5 sub-algorithms are presented as ALNS-1 (original), ALNS-

2, ALNS-3, ALNS-4, and ALNS-5 which use Formulas 1, 2, 3, 4 and 5
respectively. The algorithms have been coded in C++ and run on a
computer notebook with Intel® CoreTM i5-2410M 2.3 GHz and 4 GB
memory. The stopping criteria have been set according to the problem
size. For small instances, the time after which the optimal solution was
found is presented, while in the medium, large and case study pro-
blems, computational time was used, which was set to be 10, 20, and
60min respectively. The experiment has been executed 5 times and the
best solution is recorded. Due to the optimal solution not being found
within the acceptable computational time for the medium and large
(including the case study) sized problems, the time limit of the run time
in Lingo v.11 for Windows was set to be 240 h for the medium sized
instances and 480 h for the large-sized instances (including the case
study). The best and bound of the solutions generated are reported and
compared with those that are generated by the proposed heuristics.

5.2. Computational results

Computational results are presented in terms of solution quality and
computational speed. Table 5 shows the optimal solutions obtained
from the mathematical model, and the best values (i.e., harvested areas
and the amount of CPU time required to execute the proposed algo-
rithms) of the proposed algorithms for small-size problems. For the
medium-sized instances, computational results are presented in Table 6
and the results of statistical tests for all methods are shown in Table 7.
Tables 8 and 9 present the best values of the proposed algorithms and
statistics results among all methods for large-size problems, respec-
tively.

From Table 5, we can see that all proposed algorithms can find the
optimal solution in a shorter computational time. We use the stopping

Table 3
Matching of destroy and repair methods.

List of destroy methods Available repair methods List of destroy methods Available repair methods

FirstCS/BestCS/O1/In ExRoute PartialReRoute PCS/O2/1 ReRouteTabu FixedReRoute
RandO1/In ExRoute PartialReRoute PCS/O2/2 ReRouteTabu FixedReRoute
FirstCS/BestCS/O1/De ExRoute PartialReRoute ATT/1 ReRouteTabu FixedReRoute
RandO1/De ExRoute PartialReRoute ATT/2 ReRouteTabu FixedReRoute

Table 4
Details of data generated for every group of problem instances.

Group of data Data
name

No. of
fields

Size of
fields (rai)

No. of
Harvesters

Total area
(rai)

Small S-1 8 5–100 3 150–600
S-2 10 4
S-3 10 4
S-4 12 3
S-5 10 4

Medium M-1 15 10–150 7 150–600
M-2 15 8
M-3 20 8
M-4 20 7
M-5 25 9
M-6 25 10
M-7 25 10
M-8 30 12

Large L-1 50 10–150 20 400–1500
L-2 55 20
L-3 60 22
L-4 60 23
L-5 65 25
L-6 65 25
L-7 70 25

Case study C-1 321 5–200 80 120,000

Remark: 1 rai= 0.16 Ha.
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criteria as the time that the proposed algorithms can find the optimal
solution recorded in this Table. We found that ALNS-2 which uses the
acceptance of best solution Formula 2 is the one that has the lowest
computational time when compared with all other heuristics. The
ALNS-2 uses 1452.12 times (2904.24/2= 1452.12) less computational
time than that of Lingo v.11 for Windows, while generating the same
solution. From Table 6, the result is similar to the small size test in-
stances. ALNS-2 can find 100% best solutions among all proposed
heuristics. Comparing with the Best solution generated by Lingo v.11
for Windows, ALNS-2 generates better solutions while using 1440 times
((240× 60)/10) less time than Lingo v.11 for Windows. Comparing the
proposed heuristics with the Bound, the proposed heuristics are
0.25–4.97% away from the Bound generated by Lingo v.11 for Win-
dows while using 14,400min, which is relatively low. This means that
we can conclude that our proposed heuristic is effective for medium size
test instances. The statistical test was performed using the paired t-test
at a confident interval of 95%. The result is shown in Table 7. In this
table, the signs ≥, = and ≤ indicate that the solution of an algorithm
is significantly greater, equal or less than that of the compared algo-
rithm. Numbers in parentheses are the p-value of that comparison. The
results in Table 7 show that “Best” can generate worse solutions than
that of all proposed heuristics, while the “Bound” is significantly higher
than that of all others. It is noted that the “Bound” could contain in-
feasible solutions. That is why it has better solutions than the others.
Comparing only the proposed heuristics, ALNS-2 is significantly the
best heuristic out of all proposed heuristics. From the statistical result,
the proposed heuristics that use Formula 1 (ALNS-1) are not different
from Formula 5 (ALNS-5), and Formula 3 (ALNS-3) is not different from
Formula 4 (ALNS-4). This means that the acceptance formula using an
exponential function (Formula 1) is not different from the linear func-
tion (Formula 5). The parabola function that did not use the quality of
the current solution to determine the probability of accepting a worse
solution can reduce the quality of the proposed heuristic to be as good
as a function that takes care of the quality of the current solution.

For the experiment of the large size test instances, the results are

shown in Table 8. From this table, the ALNS-2, which is the adaptive
large-scale neighborhood search that uses Formula 1 as the best case
acceptance, can find the best solution among all other proposed heur-
istics in about 3 out of 4 test instances. ALNS-2 can find 0.17–3.90%
from the Bound generated by Lingo v.11 for Windows using 1440 times
((480×60)/20) less computational time. The paired t-test is used to
check if the proposed heuristic is statistically different than that of the
“Best” and the “Bound”. The results are shown in Table 9. This Table
reveals that Formula 1 (ALNS-1) is not significantly different from
Formula 5 (ALNS-5). In the last test instances (i.e., S-5), Formula 1 is
also not different from Formula 4 (ALNS-4). This means that the ex-
ponential formula does not perform differently from the linear function,
but the parabola function Formulas 2 (ALNS-2) and 3 (ALNS-3) gen-
erate a significantly better solution than all of the other proposed
heuristics.

To investigate the performance of the proposed algorithms, the
percentage differences (PD) of the solutions obtained by the algorithms
with respect to those of the mathematical model (i.e. optimal solutions
or “Bound” which is the bound obtained within the predefined time
limit) were determined by Eq. (30). The percentage difference obtained
for all test instances is shown in Table 10. From this table, we can see
that using the acceptance worst case, Formula 1 generates the lowest
difference from the best solution, which is only 5.402%, while the other
acceptance formulas generate solutions which lay between 1.782 and
5.346% from the best solution:

Table 5
Result of small instances.

Test problem Optimal Time ALNS-1 ALNS-2 ALNS-3 ALNS-4 ALNS-5

Area Time Area Time Area Time Area Time Area Time

S-1 314 379.8 314 2.1 314 2.1 314 2.2 314 2.5 314 2.5
S-2 363 328.8 363 2.5 363 2.3 363 2.2 363 2.2 363 2.2
S-3 291 4620.0 291 2.3 291 1.9 291 2 291 2.4 291 2.4
S-4 385 8580.0 385 2.4 385 1.8 385 2.9 385 2.3 385 2.3
S-5 258 612.6 258 2.6 258 1.9 258 2.05 258 2.1 258 2.1
c.time(avg.) 2904.24 2.38 2.0 2.27 2.3 2.3

Remark: c.time(avg.) = computational average for all instances, time= computational time used to find the optimal solution (second), area= area harvested in
1 day (rai), 1 rai= 0.16 Ha.

Table 6
Computational results of medium size of test instances.

Test problem No. of fields No. of harvesters Total harvested area in predefined time (rai)

Best Bound ALNS-1 ALNS-2 ALNS-3 ALNS-4 ALNS-5

M-1 15 7 450 497 464 484 469 475 464
M-2 15 8 451 528 489 515 505 505 496
M-3 20 8 574 684 640 650 653 648 643
M-4 20 7 490 548 511 534 506 529 511
M-5 25 9 717 792 755 788 755 759 756
M-6 25 10 740 796 769 790 780 772 770
M-7 25 10 748 791 776 789 784 784 774
M-8 30 12 820 892 862 881 876 870 864

Remark: Best= best solution generated by Lingo v.11 on Windows within 240 h, Bound= solution bound reported by Lingo v.11 for Windows within 240 h, 1
rai= 0.16 Ha.

Table 7
Results of statistical test for all methods.

Method Bound ALNS-1 ALNS-2 ALNS-3 ALNS-4 ALNS-5

Best ≤(0.00) ≤(0.035) ≤(0.000) ≤(0.022) ≤(0.004) ≤(0.028)
Bound ≥(0.000) ≥(0.000) ≥(0.000) ≥(0.000) ≥(0.000)
ALNS-1 ≤(0.001) ≤(0.026) ≤(0.001) =(0.156)
ALNS-2 ≥(0.020) ≥(0.035) ≥(0.001)
ALNS-3 =(0.631) ≤(0.024)
ALNS-4 ≤(0.003)
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where

Bound= the solution bound generated from Lingo v.11 for
Windows which can be both the optimal solution or the bound so-
lution within the predefined time limit,
Algo= the solution generated by the proposed heuristics.

Additionally, we performed experiments on the adaptation of the
best solution of the proposed heuristics using Formulas 1–5. The si-
mulation used 1185 iterations. The best solutions generated from each
formula were then collected, and the simulation results are shown in
Fig. 4. This Figure shows that the acceptance of worse criteria using
Formula 2 slowly changes the simulation result, and it changes the
solution throughout the simulation run until it obtains the best solution.

Formula 3 performs well in the first half of the simulation runs. Then it
does not change the solution in the last part of the simulation run,
which can make the solution worse than that of Formula 2. These two
formulas are the best formulas to accept the worse solution due to
giving a higher chance to accept the worse solution in the first part of
the simulation to explore a greater search area. The chance of accep-
tance of the worse solution decreases until the lowest chance is in the
middle of the simulation run, and starts to increase the chance of ac-
ceptance of the worse solution again after the first half. The second
increase we decided to allow was for the algorithm to escape from a
local optimum, by accepting the chance of a solution more easily, which
can increase the search efficiency. Formula 2 takes account of the dif-
ference of the worse solution and the current solution, while Formula 3
only uses the effect of the iteration that makes it behave differently.

6. Conclusions and future developments

This research focuses on the mechanical harvester assignment and
routing problem with time windows (HARPTW) to maximize the total
areas serviced by a mechanical harvester under a sharing infield re-
sources system. A mixed-integer programming model that can handle
small-size problems was proposed. For large-scale problems, an effec-
tive ALNS that employs the idea of Differential Evolution (DE) is firstly
designed to solve the problems integral to the mechanical harvester
assignment problem (HAP) and mechanical harvester routing problem
(HRP).

In our research, to develop the ALNS employing the idea of DE, the
destroy method has been made iterative in the incomplete solution,
such as destroying the list of sugarcane fields that have not yet been
scheduled, then the repair method has been applied, in which a good
constructive algorithm is hidden, to get a good solution. The final so-
lution will be more flexible than if the destroy and repair methods have
been executed only in the complete solution. Our algorithm has two
phases, which are constructing the sequences of the sugarcane fields
and the mechanical harvesters. Then the construction of the complete
algorithm will be performed. Additionally, four new formulas were
developed to calculate the probability of accepting a worse solution
using a linear and parabola function, instead of the exponential func-
tion that is mostly used in the literature. The results of the proposed
method show that the parabola function that uses the information of the
solution quality outperforms all the other proposed heuristics. In this
paper, mathematical and heuristics models were developed to solve the
infield machinery sharing system which are easily adaptable, and
should prove to be beneficial to other sugar industries, including other
similar agro-food sectors in Thailand and around the world by reducing
the costs of provision of agricultural infield machinery. Most im-
portantly, the machinery sharing system can create sustainable sugar
production by reducing infield machinery costs for small-size growers,
increasing returns to infield machine owners, and also maintaining the
right amount of supply for the sugar industry.

However, there is still much opportunity to extend our work in

Table 8
Computational result of large-sized instances and the case study.

Test problem No. of fields No. of harvesters Total harvested area in predefined time (rai)

Best Bound ALNS-1 ALNS-2 ALNS-3 ALNS-4 ALNS-5

L-1 50 20 1850 2015 1972 1985 1950 1953 1972
L-2 55 20 1890 2140 2104 2116 2130 2105 2050
L-3 60 22 1882 2298 2185 2294 2267 2190 2176
L-4 60 23 1974 2310 2035 2220 2113 2057 2048
L-5 65 25 2011 2424 2231 2389 2289 2287 2269
L-6 65 25 2032 2421 2242 2391 2302 2251 2239
L-7 70 25 2208 2540 2349 2459 2381 2350 2340
Case study 321 113 12,015 13,420 13,220 13,338 13,110 13,210 13,002

Remark: Best= best solution generated by Lingo v.11 for Windows within 480 h, Bound= solution bound reported by Lingo v.11 within 480 h, 1 rai= 0.16 Ha.

Table 9
Statistical test for the large-size test instances.

Method Bound ALNS-1 ALNS-2 ALNS-3 ALNS-4 ALNS-5

Best ≤(0.00) ≤(0.050) ≤(0.017) ≤(0.021) ≤(0.043) ≤(0.046)
Bound ≥(0.000) ≥(0.000) ≥(0.000) ≥(0.000) ≥(0.000)
ALNS-1 ≤(0.002) ≤(0.017) =(0.217) =(0.755)
ALNS-2 ≥(0.002) ≥(0.004) ≥(0.012)
ALNS-3 ≥(0.012) ≥(0.004)
ALNS-4 ≤(0.021)

Table 10
Percent difference of the solution generated by the proposed algorithms and the
bound solution (optimal solution or the bound solution found by Lingo v.11 for
Windows).

Instance Bound solution % Difference from the bound solution

ALNS-1 ALNS-2 ALNS-3 ALNS-4 ALNS-5

M-1 497 6.640 2.616 5.634 4.427 6.640
M-2 528 7.386 2.462 4.356 4.356 6.061
M-3 684 6.433 4.971 4.532 5.263 5.994
M-4 548 6.752 2.555 7.664 3.467 6.752
M-5 792 4.672 0.505 4.672 4.167 4.545
M-6 796 3.392 0.754 2.010 3.015 3.266
M-7 791 1.896 0.253 0.885 0.885 2.149
M-8 892 3.363 1.233 1.794 2.466 3.139
L-1 2015 2.134 1.489 3.226 3.077 2.134
L-2 2140 1.682 1.121 0.467 1.636 4.206
L-3 2298 4.917 0.174 1.349 4.700 5.309
L-4 2310 11.905 3.896 8.528 10.952 11.342
L-5 2424 7.962 1.444 5.569 5.652 6.394
L-6 2421 7.394 1.239 4.915 7.022 7.518
L-7 2540 7.520 3.189 6.260 7.480 7.874
Case study 13,420 1.490 0.611 2.310 1.565 3.115

% Average 5.346 1.782 4.011 4.383 5.402
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many ways. Future development will be to investigate mechanical
harvester conditions in terms of breakdowns which can be considered
as a fuzzy variable. We believe that this issue can be added to our study
to model real-world problems, and will be a valuable extension. As
earlier stated, even though the proposed methods are very efficient and
widely used, developing new destroy and repair methods including new
formulas to accept the worse solution to be the starting solution for the
search will be a valuable extension. Hence, research to determine the
solutions of the problem should be carried out in future work by using
metaheuristics or hybrid methods to compare the strengths of various
approaches in solving problems of this nature.
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