N

Sustainable Supply Chain Management of the European Union

Co-funded by the Erasmus+ Programme

Introduction

- Significant level of outsourcing in the last few years
- Many leading brand OEMs outsource complete manufacturing and design of their products
- More outsourcing has meant
- Search for lower cost manufacturers
- Development of design and manufacturing expertise by suppliers
- Procurement function in OEMs becomes very important
- OEMs have to get into contracts with suppliers
- For both strategic and non-strategic components

Strategic Components

Supply Contract can include the following:

- Pricing and volume discounts.
- Minimum and maximum purchase quantities.
- Delivery lead times.
- Product or material quality.
- Product return policies.

Supply Contracts

- Consider a 2-stage sequential supply chain: A buyer and a supplier.
- Buyer's activities:
- generating a forecast
- determining how many units to order from the supplier
- placing an order to the supplier so as to optimize his own profit
- Purchase based on forecast of customer demand
- Supplier's activities:
- reacting to the order placed by the buyer.
- Make-To-Order (MTO) policy Swimsuit Example
- 2 Stages:
- a retailer who faces customer demand
- a manufacturer who produces and sells swimsuits to the retailer.
- Retailer Information
- Summer season sale price of a swimsuit is $\$ 125$ per unit.
- Wholesale price paid by retailer to manufacturer is \$80 per unit.
- Salvage value after the summer season is $\$ 20$ per unit
- Manufacturer information
- Fixed production cost is $\$ 100,000$
- Variable production cost is $\$ 35$ per unit

What Is the Optimal Order Quantity?

- Retailer marginal profit is the same as the marginal profit of the manufacturer, \$45.
- Retailer's marginal profit for selling a unit during the season, \$45, is smaller than the marginal loss, \$60, associated with each unit sold at the end of the season to discount stores.
- Optimal order quantity depends on marginal profit and marginal loss but not on the fixed cost.
- Retailer optimal policy is to order 12,000 units for an average profit of \$470,700.
- If the retailer places this order, the manufacturer's profit is 12,000(80-35) $100,000=\$ 440,000$

Sequential Supply Chain

Retailer's expected profit as a function of order quantity
Co-funded by the
Erasmus+ Programme of the European Union \square

Risk Sharing

- In the sequential supply chain:
- Buyer assumes all of the risk of having more inventory than sales
- Buyer limits his order quantity because of the huge financial risk.
- Supplier takes no risk.
- Supplier would like the buyer to order as much as possible
- Since the buyer limits his order quantity, there is a significant increase in the likelihood of out of stock.
- If the supplier shares some of the risk with the buyer
- it may be profitable for buyer to order more
- reducing out of stock probability
- increasing profit for both the supplier and the buyer.

Supply contracts enable this risk sharing

Co-funded by the

Buy-Back Contract

- Seller agrees to buy back unsold goods from the buyer for some agreed-upon price.
- Buyer has incentive to order more
- Supplier's risk clearly increases.
- Increase in buyer's order quantity
- Decreases the likelihood of out of stock
- Compensates the supplier for the higher risk

Co-funded by the

Buy-Back Contract Swimsuit Example

- Assume the manufacturer offers to buy unsold swimsuits from the retailer for \$55.
- Retailer has an incentive to increase its order quantity to 14,000 units, for a profit of $\$ 513,800$, while the manufacturer's average profit increases to $\$ 471,900$.
- Total average profit for the two parties

$$
=\$ 985,700(=\$ 513,800+\$ 471,900)
$$

- Compare to sequential supply chain when total profit $=\$ 910,700(=$ \$470,700 + \$440,000)

Buy-Back Contract Swimsuit Example

Co-funded by the Erasmus+ Programme of the European Union

Revenue Sharing Contract

- Buyer shares some of its revenue with the supplier
- in return for a discount on the wholesale price.
- Buyer transfers a portion of the revenue from each unit sold back to the supplier

Revenue Sharing Contract Swimsuit Example

- Manufacturer agrees to decrease the wholesale price from \$80 to \$60
- In return, the retailer provides 15 percent of the product revenue to the manufacturer.
- Retailer has an incentive to increase his order quantity to 14,000 for a profit of $\$ 504,325$
- This order increase leads to increased manufacturer's profit of \$481,375
- Supply chain total profit

$$
=\$ 985,700(=\$ 504,325+\$ 481,375) .
$$

Revenue Sharing Contract Swimsuit Example

Co-funded by the Erasmus+ Programme of the European Union

Other Types of Contracts

- Quantity-Flexibility Contracts
- Supplier provides full refund for returned (unsold) items as long as the number of returns is no larger than a certain quantity.
- Sales Rebate Contracts
- Provides a direct incentive to the retailer to increase sales by means of a rebate paid by the supplier for any item sold above a certain quantity.

Global Optimization Strategy

-What is the best strategy for the entire supply chain?

- Treat both supplier and retailer as one entity
- Transfer of money between the parties is ignored

Global Optimization Swimsuit Example

- Relevant data
- Selling price, \$125
- Salvage value, \$20
- Variable production costs, \$35
- Fixed production cost.
- Supply chain marginal profit, $90=125-35$
- Supply chain marginal loss, $15=35-20$
- Supply chain will produce more than average demand.
- Optimal production quantity $=16,000$ units
- Expected supply chain profit $=\$ 1,014,500$.

Global Optimization Swimsuit Example

Profit vs. Order Quantity

Profit using global optimization strategy
Co-funded by the Erasmus+ Programme of the European Union \square

Global Optimization and Supply Contracts

- Unbiased decision maker is unrealistic
- Requires the firm to surrender decision-making power to an unbiased decision maker
- Carefully designed supply contracts can achieve as much as global optimization
- Global optimization does not provide a mechanism to allocate supply chain profit between the partners.
- Supply contracts allocate this profit among supply chain members.
- Effective supply contracts allocate profit to each partner in a way that no partner can improve his profit by deciding to deviate from the optimal set of decisions.

Co-funded by the

Implementation Drawbacks of Supply Contracts

- Buy-back contracts
- Require suppliers to have an effective reverse logistics system and may increase logistics costs.
- Retailers have an incentive to push the products not under the buy-back contract.
- Retailer's risk is much higher for the products not under the buy back contract (competing products!).
- Revenue sharing contracts
- Require suppliers to monitor the buyer's revenue and thus increases administrative cost.
- Buyers have an incentive to push competing products with higher profit margins.
- Similar products from competing suppliers with whom the buyer has no revenue sharing agreement.

Contracts for Make-to-Stock \& Make-to-Order Supply Chains

- Previous contracts examples were with Make-to-Order supply chains
- What happens when the supplier has a Make-to-Stock situation?

Supply Chain for Fashion Products Ski-Jackets

Manufacturer produces ski-jackets prior to receiving distributor orders

- Season starts in September and ends by December.
- Production starts 12 months before the selling season
- Distributor places orders with the manufacturer six months later.
- At that time, production is complete; distributor receives firms orders from retailers.
- The distributor sales ski-jackets to retailers for $\$ 125$ per unit.
- The distributor pays the manufacturer $\$ 80$ per unit.
- For the manufacturer, we have the following information:
- Fixed production cost $=\$ 100,000$.
- The variable production cost per unit = \$55
- Salvage value for any ski-jacket not purchased by the distributors= $\$ 20$.

Profit and Loss

- For the manufacturer
- Marginal profit = \$25
- Marginal loss = \$35.
- Since marginal loss is greater than marginal profit, the distributor should produce less than average demand, i.e., less than 13, 000 units. (Demand pattern: see Ex. 2.3)
- How much should the manufacturer produce?
- Manufacturer optimal policy $=12,000$ units
- Average profit = \$160,400.
- Distributor average profit $=\$ 510,300$.
- Manufacturer assumes all the risk limiting its production quantity
- Distributor takes no risk

Make-to-Stock Ski Jackets

Expected Profit

Production Quantity
Manufacturer's expected profit
Co-funded by the
Erasmus+ Programme of the European Union

Pay-Back Contract

- Buyer agrees to pay some agreed-upon price for any unit produced by the manufacturer but not purchased.
- Manufacturer incentive to produce more units
- Buyer's risk clearly increases.
- Increase in prod. quantities has to compensate the distributor for the increase in risk.

Pay-Back Contract Ski Jacket Example

- Assume the distributor offers to pay $\$ 18$ for each unit produced by the manufacturer but not purchased.
- Manufacturer marginal loss $=55-20-18=\$ 17$
- Manufacturer marginal profit = \$25.
- Manufacturer has an incentive to produce more than average demand.
- Manufacturer increases production quantity to 14,000 units
- Manufacturer profit = \$180,280
- Distributor profit increases to $\$ 525,420$.

Total profit = \$705,400

- Compare to total profit in sequential supply chain

$$
=\$ 670,000(=\$ 160,400+\$ 510,300)
$$

Pay-Back Contract Ski Jacket Example

Co-funded by the Erasmus+ Programme of the European Union

Pay-Back Contract Ski Jacket Example (cont)

Distributor's average profit (pay-back contract)
Co-funded by the Erasmus+ Programme of the European Union

Cost-Sharing Contract

- Buyer shares some of the production cost with the manufacturer, in return for a discount on the wholesale price.
- Reduces effective production cost for the manufacturer
- Incentive to produce more units

Co-funded by the

Cost-Sharing Contract Ski-Jacket Example

- Manufacturer agrees to decrease the wholesale price from \$80 to \$62
- In return, distributor pays 33% of the manufacturer production cost
- Manufacturer increases production quantity to 14,000
- Manufacturer profit = \$182,380
- Distributor profit = \$523,320
- The supply chain total profit $=\$ 705,700$

Same as the profit under pay-back contracts

Cost-Sharing Contract Ski-Jacket Example

Manufacturer's average profit (cost-sharing contract)
Co-funded by the Erasmus+ Programme of the European Union

Cost-Sharing Contract

 Ski-Jacket Example (cont)

Distributor's average profit (cost-sharing contract)
Co-funded by the Erasmus+ Programme of the European Union

Implementation Issues

- Cost-sharing contract requires manufacturer to share production cost information with distributor, something manufacturers are reluctant to do
- So, how? \rightarrow Agreement between the two parties:
- Distributor purchases one or more components that the manufacturer needs.
- Components remain on the distributor books but are shipped to the manufacturer facility for the production of the finished good.

Co-funded by the

Global Optimization

- Relevant data:
- Selling price, \$125
- Salvage value, \$20
- Variable production costs, \$55
- Fixed production cost. \$100,000
- Cost that the distributor pays the manufacturer is meaningless
- Supply chain marginal profit, $70=125-55$
- Supply chain marginal loss, $35=55-20$
- Supply chain will produce more than average demand.
- Optimal production quantity $=14,000$ units
- Expected supply chain profit $=\$ 705,700$

Same profit as under pay-back and cost sharing contracts

Co-funded by the

Global Optimization

N鳥 Contracts with Asymmetric Information

- Implicit assumption so far: Buyer and supplier share the same forecast
- However, inflated forecasts from buyers is a reality
- How to design contracts such that the information shared is credible?

Two Possible Contracts

- Capacity Reservation Contract
- Buyer pays to reserve a certain level of capacity at the supplier
- A menu of prices for different capacity reservations provided by supplier
- Buyer signals true forecast by reserving a specific capacity level
- Advance Purchase Contract
- Supplier charges special price before building capacity
- When demand is realized, price charged is different
- Buyer's commitment to paying the special price reveals the buyer's true forecast

褱 Contracts for Non-Strategic Components

- Variety of suppliers
- Market conditions dictate price
- Buyers need to be able to choose suppliers and change them as needed
- Long-term contracts have been the tradition
- Recent trend towards more flexible contracts
- Purchase supply now or wait for better market condition in the future
- Consider effective hedging strategies against unfavorable situations (i.e., shortages)

Long-Term Contracts

- Also called forward or fixed commitment contracts
- Contracts specify a fixed amount of supply to be delivered at some point in the future
- Supplier and buyer agree on both price and quantity
- Buyer bears no financial risk
- Buyer takes huge inventory risks due to:
- uncertainty in demand
- inability to adjust order quantities.

Option Contracts

- Buyer pre-pays a relatively small fraction of the product price up-front
- Supplier commits to reserve capacity up to a certain level.
- Initial payment is the reservation price or premium.
- If buyer does not exercise option, the initial payment is lost.
- Buyer can purchase any amount of supply up to the option level by:
- paying an additional price (execution price or exercise price)
- agreed to at the time the contract is signed
- Total price (reservation plus execution price) typically higher than the unit price in a long-term contract.

Option Contracts

- Provide buyer with flexibility to adjust order quantities depending on realized demand
- Reduces buyer's inventory risks.
- Shifts risks from buyer to supplier. Supplier is now exposed to customer demand uncertainty.

Spot Purchase

- Buyers look for additional supply in the open market.
- May use independent e-markets or private e-markets to select suppliers.
- Focus:
- Using the marketplace to find new suppliers
- Forcing competition to reduce product price.

Portfolio Contracts

- Portfolio approach to supply contracts
- Buyer signs multiple contracts at the same time
- optimize expected profit
- reduce risk.
- Contracts
- differ in price and level of flexibility
- hedge against inventory, shortage and spot price risk.
- Meaningful for commodity products
- a large pool of suppliers
- each with a different type of contract.

Appropriate Mix of Contracts

- How much to commit to a long-term contract?
- Base commitment level.
- How much capacity to buy from companies selling option contracts?
- Option level.
- How much supply should be left uncommitted?
- Additional supplies in spot market if demand is high
- Hewlett-Packard's (HP) strategy for electricity or memory products
- About 50\% procurement cost invested in long-term contracts
- 35\% in option contracts
- Remaining is invested in the spot market.

Risk Trade-Off in Portfolio Contracts

- If demand is much higher than anticipated
- Base commitment level + option level < Demand,
- Firm must use spot market for additional supply.
- Typically the worst time to buy in the spot market
- Prices are high due to shortages.
- Buyer can select a trade-off level between price risk, shortage risk, and inventory risk by carefully selecting the level of long-term commitment and the option level.
- For the same option level, the higher the initial contract commitment, the smaller the price risk but the higher the inventory risk taken by the buyer.
- The smaller the level of the base commitment, the higher the price and shortage risks due to the likelihood of using the spot market.
- For the same level of base commitment, the higher the option level, the higher the risk assumed by the supplier since the buyer may exercise only a small fraction of the option level.

Risk Trade-Off in Portfolio Contracts

> Low

High

Base commitment level

Option level	High	Inventory risk (supplier)	N/A*
	Low	Price and shortage risks (buyer)	Inventory risk (buyer)

For a given situation, either the option level or the base commitment level may be high, but not both.

