

Co-funded by the Erasmus+ Programme of the European Union

Learning Experience from Teaching and Learning Methods in Engineering Education: Instructors' Viewpoint

Duangthida Hussadintorn Na Ayutthaya,

Pisut Koomsap,

Rui M. Lima,

Tomasz Nitkiewicz

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry

Outline

- MSIE 4.0 Project
- Learning Experience
- The Progression of Teaching & Learning Methods (T&Ls)
- T&Ls on LOVE Grid
- 5 Research Methodology & Survey Participants
- Results and Discussions

SUSTAINABLE SMART INDUSTRY

ACQUISITION ANALYSIS EXECUTION

SUSTAINABILITY STRATEGY TECHNOLOGY

CO-CREATED
PRODUCT DESIGN

THESIS CONFERENCE

ADVANCED MANUFACTURING PROCESSES


STUDENT-CENTERED LEARNING

MSIE 4.0 Curriculum

SMART PRODUCTION

IE COLLOQUIUM

MSE

Analysis of MSIE Curricula

Assessment of Teaching & Learning methods

Analysis of Needs of Industry Students

 ∞

Gap Analysis

A Modernized MSIE Curriculum

Syllabuses for All Courses

Teaching & Learning Materials

Pilot Teaching

Platform for Online Learning

Laboratory with Online Remote Access

Submission of the curriculum for

Short-Term Courses for Professionals

Organizing A Conference on Engineering Education

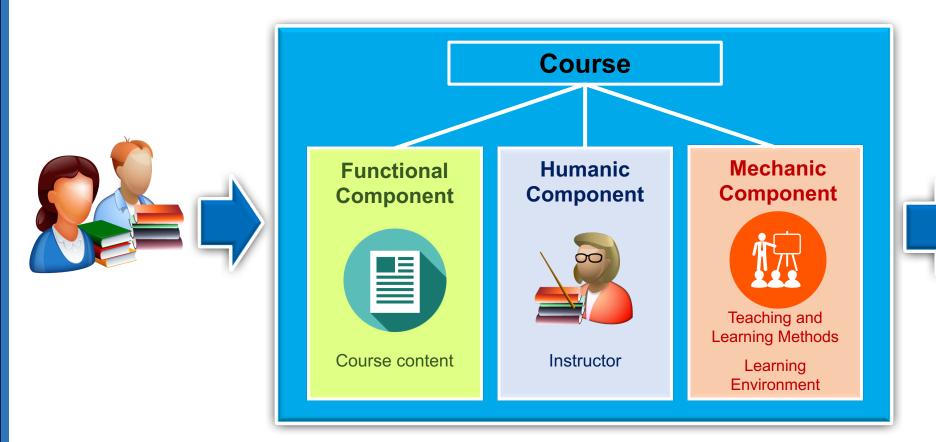
Oct 2020

Accreditation

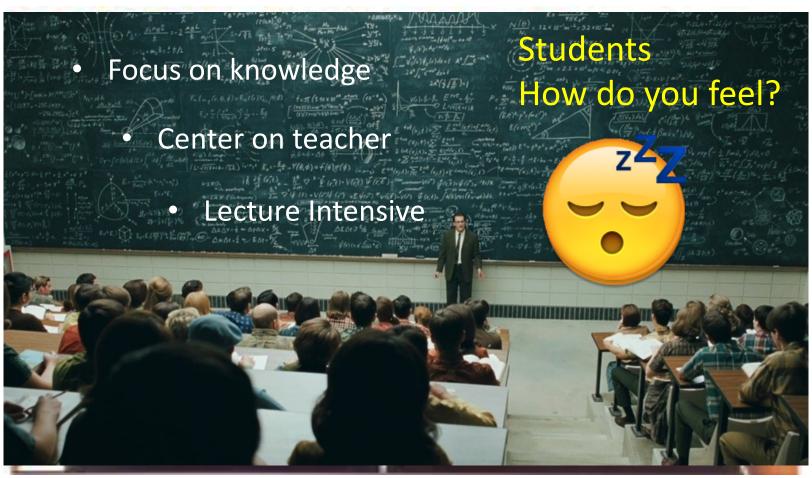
2018

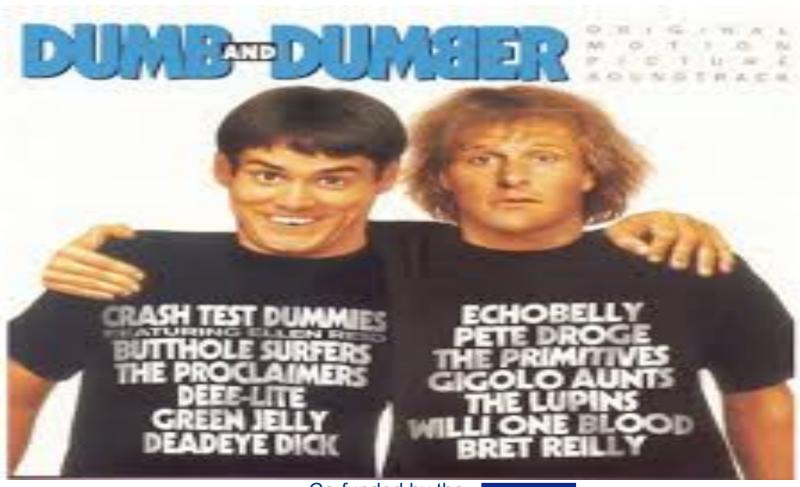
Nov

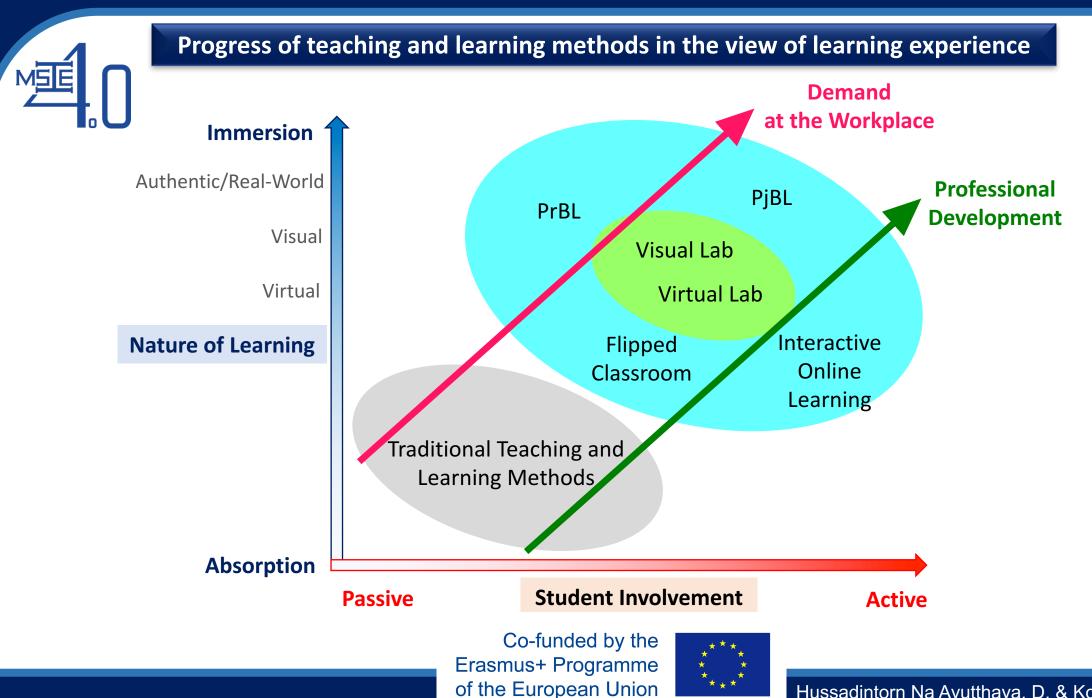
Gap Analysis


Curriculum Design & Development

Learning Process




Conventional way of learning



Conventional way of learning

Existing Teaching & Learning Methods

S
7
0
_
—
മ
5
ρū
\subseteq
· =
\subseteq
=
(0
Ψ
_
7
ਰ
bo
٣
.≒
_
ᄀ

1. Assignments	11. Guided practical exercises	21. Role play
2. Brainstorming	12. Individual presentation	22. Seminars conducted in class
3. Case study	13. Integrated or interdisciplinary teaching	23. Showing video material
4. Class debate	14. Laboratory classes	24. Simulation
5. Conference	15. Lecture	25. Small group debate
6. Demonstration with exercising	16. Live lecture from a remote place	26. Virtual laboratory
7. Discussion	17. Online interactive learning	27. Virtual reality
8. Field classes, trips and excursion	18. Problem-based learning (PrBL)	28. Workshop
9. Game-based learning	19. Programmed teaching	
10. Guided conversation	20. Project-based learning (PjBL)	

Sajjad, S. (2010). Effective teaching methods at higher education level. *Pakistan Journal of Special Education*, 11, 29-43.

Co-funded by the Erasmus+ Programme of the European Union

Močinić, S. N. (2012). Active teaching strategies in higher education. *Metodički obzori: časopis za odgojno-obrazovnu teoriju i praksu, 7*(15), 97-105.

Teaching & Learning Methods on LOVE Grid

V-Visiting (passive immersion)	E-Experimenting (active immersion)
 Field classes, trips and excursions Conference Virtual reality 	 Project-based learning (PjBL) Laboratory classes Virtual laboratory
O-Observing (passive absorption)	L-Learning (active absorption)
 Lecture Guided conversation Integrated or interdisciplinary teaching Showing video material Seminars conducted in classes Live lecture from a remote place 	 Discussion Demonstration with exercising Class debate Small groups debate Simulation Problem-based learning (PrBL) Programmed teaching Workshop Brainstorming Case study Online interactive learning Game-based learning

Research Methodology & Survey Participants

Questionnaire Set Up 1) The most <u>applied</u> teaching and learning methods

2) The most <u>efficient</u> teaching and learning methods

Choice:

viewpoints

- (0) have never been applied,
- (1) applied in a very few of the courses,

Ranking the top five efficient methods in their

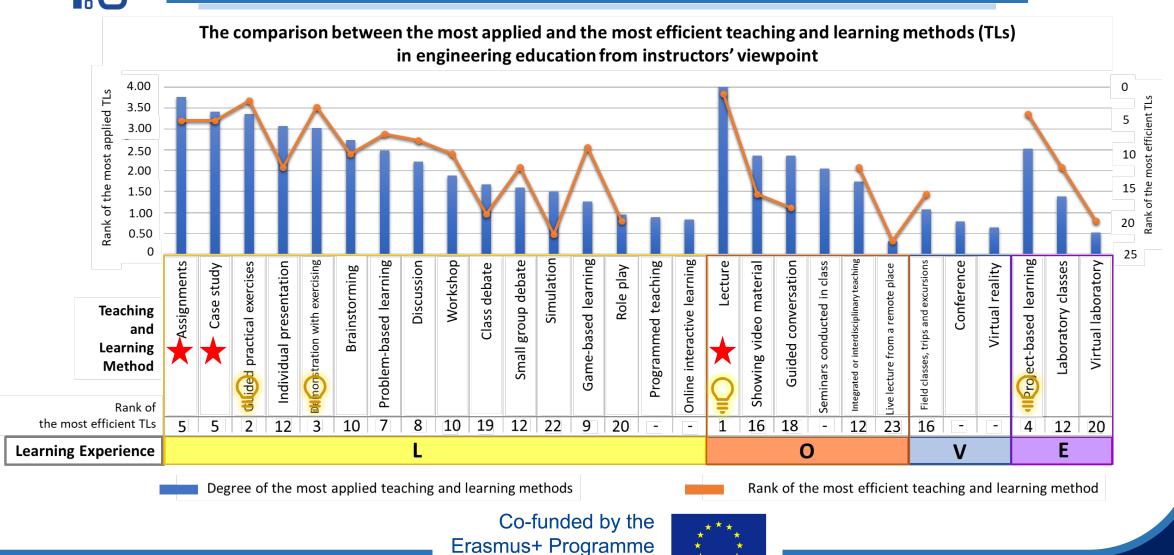
- (2) applied in some of the courses,
- (3) applied in half of the courses,
- (4) applied in many of the courses,
- (5) applied in all of the courses

Data Analysis

- Weighted average and standard deviation were used to represent the most applied teaching and learning methods.
- A five Likert scale was applied in descending order for weights of the importance of the top five ranking and the sum of products was used for ranking the efficient methods.

Survey Participants

Research


Methodology

- 42 Instructors from the project consortium (3 EU universities, 6 Thai universities)
 - 73.8% have been teaching \geq 5 years, and 50% have been teaching \geq 10 years.
- They have offered 4 courses on average.

Results

of the European Union

Discussions

- There exists strong conformity of application level and efficiency rank.
- Decreasing potential methods observer experience methods
- Growing potential methods experimenter experience methods that are expected to have higher coverage but certainly need strategic, program-oriented development path,
- Redefining potential methods learner experience methods that have outdated approaches and structure and visitor experience methods that have only supportive role in education

Conclusions

- The strong interrelation can be observed between the assessment level of teaching and learning methods and their actual use.
- From their opinion, majority of conventional teaching and learning methods are still efficient.
- The instructors still prefer to transfer knowledge to students and to encourage them participate in the transferring process.
- The approach can also be applied in other disciplines for their instructors to understand and properly make an adjustment to make student learning experience richer.

Acknowledgement

 This work is the outcome of project "Curriculum Development of Master's Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry (MSIE 4.0)" that has been funded with support from the European Commission (Project Number: 586137-EPP-1-2017-1-TH-EPPKA2-CBHE-JP).

Co-funded by the Erasmus+ Programme of the European Union

Thank You

Together We Will Make Our Education Stronger

https://msie4.ait.ac.th/

@MSIE4Thailand

MSIE 4.0 Channel

of Master's Degree Program in

Industrial Engineering for Thailand Sustainable Smart Industry