Learning Experience from Teaching and Learning Methods in Engineering Education: Instructors’ Viewpoint

Duangthida Hussadintorn Na Ayutthaya,
Pisut Koomsap,
Rui M. Lima,
Tomasz Nitkiewicz

Co-funded by the Erasmus+ Programme of the European Union
Outline

1. MSIE 4.0 Project
2. Learning Experience
3. The Progression of Teaching & Learning Methods (T&Ls)
4. T&Ls on LOVE Grid
5. Research Methodology & Survey Participants
6. Results and Discussions
Analysis of MSIE Curricula

Gap Analysis

A Modernized MSIE Curriculum

Syllabuses for All Courses

Teaching & Learning Materials

Pilot Teaching

Platform for Online Learning

Laboratory with Online Remote Access

Short-Term Courses for Professionals

Submission of the curriculum for Accreditation

Organizing A Conference on Engineering Education

KEY OUTPUTS
Learning Process

- Course
 - Functional Component
 - Course content
 - Humanic Component
 - Instructor
 - Mechanic Component
 - Teaching and Learning Methods
 - Learning Environment

Knowledge Skills Competence

Co-funded by the Erasmus+ Programme of the European Union
Conventional way of learning

- Focus on knowledge
- Center on teacher
- Lecture Intensive

Students
How do you feel?
Conventional way of learning

• Focus on knowledge
• Center on teacher
• Lecture Intensive
Progress of teaching and learning methods in the view of learning experience

Nature of Learning
- Authentic/Real-World
- Visual
- Virtual

Absorption
- Passive
- Active

Immersion
- Demand at the Workplace

Student Involvement
- Professional Development

Traditional Teaching and Learning Methods

PrBL
- Visual Lab
- Virtual Lab

PjBL
- Flipped Classroom
- Interactive Online Learning

Co-funded by the Erasmus+ Programme of the European Union

Hussadintorn Na Ayutthaya, D. & Koomsap, P. 2019
Existing Teaching & Learning Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Brainstorming</td>
<td>12. Individual presentation</td>
<td>22. Seminars conducted in class</td>
<td></td>
</tr>
<tr>
<td>3. Case study</td>
<td>13. Integrated or interdisciplinary teaching</td>
<td>23. Showing video material</td>
<td></td>
</tr>
<tr>
<td>7. Discussion</td>
<td>17. Online interactive learning</td>
<td>27. Virtual reality</td>
<td></td>
</tr>
<tr>
<td>8. Field classes, trips and excursion</td>
<td>18. Problem-based learning (PrBL)</td>
<td>28. Workshop</td>
<td></td>
</tr>
<tr>
<td>9. Game-based learning</td>
<td>19. Programmed teaching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Guided conversation</td>
<td>20. Project-based learning (PjBL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teaching & Learning Methods on LOVE Grid

V-Visiting
(passive immersion)
1. Field classes, trips and excursions
2. Conference
3. Virtual reality

O-Observing
(passive absorption)
1. Lecture
2. Guided conversation
3. Integrated or interdisciplinary teaching
4. Showing video material
5. Seminars conducted in classes
6. Live lecture from a remote place

E-Experimenting
(active immersion)
1. Project-based learning (PjBL)
2. Laboratory classes
3. Virtual laboratory

L-Learning
(active absorption)
1. Discussion
2. Demonstration with exercising
3. Class debate
4. Small groups debate
5. Simulation
6. Problem-based learning (PrBL)
7. Programmed teaching
8. Workshop
9. Brainstorming
10. Case study
11. Online interactive learning
12. Game-based learning
13. Guided practical exercises
14. Role play
15. Assignments
16. Individual presentation

Hussadintorn Na Ayutthaya, D. & Koomsap, P. 2019
Research Methodology & Survey Participants

Research Methodology

Questionnaire Set Up

1) The most **applied** teaching and learning methods

2) The most **efficient** teaching and learning methods

Data Analysis

- **Weighted average** and **standard deviation** were used to represent the most applied teaching and learning methods.
- **A five Likert scale** was applied in descending order for weights of the importance of the top five ranking and the sum of products was used for ranking the efficient methods.

Survey Participants

- **42 Instructors** from the project consortium (3 EU universities, 6 Thai universities)
- 73.8% have been teaching ≥ 5 years, and 50% have been teaching ≥ 10 years.
- They have offered 4 courses on average.

Choice:
- (0) have never been applied,
- (1) applied in a very few of the courses,
- (2) applied in some of the courses,
- (3) applied in half of the courses,
- (4) applied in many of the courses,
- (5) applied in all of the courses
Results

The comparison between the most applied and the most efficient teaching and learning methods (TLs) in engineering education from instructors’ viewpoint

Co-funded by the Erasmus+ Programme of the European Union
Discussions

• There exists strong conformity of application level and efficiency rank.

• **Decreasing potential methods** – observer experience methods

• **Growing potential methods** – experimenter experience methods that are expected to have higher coverage but certainly need strategic, program-oriented development path,

• **Redefining potential methods** – learner experience methods that have outdated approaches and structure and visitor experience methods that have only supportive role in education
Conclusions

• The strong interrelation can be observed between the assessment level of teaching and learning methods and their actual use.
• From their opinion, majority of conventional teaching and learning methods are still efficient.
• The instructors still prefer to transfer knowledge to students and to encourage them participate in the transferring process.
• The approach can also be applied in other disciplines for their instructors to understand and properly make an adjustment to make student learning experience richer.
This work is the outcome of project “Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry (MSIE 4.0)” that has been funded with support from the European Commission (Project Number: 586137-EPP-1-2017-1-TH-EPPKA2-CBHE-JP).
Thank You
Together We Will Make Our Education Stronger

https://msie4.ait.ac.th/

@MSIE4Thailand

MSIE 4.0 Channel